
Producing Art from Algorithms

Michael McEllin, April 2020

So, you want to learn a bit about coding? Everyone says that it is the thing to do these
days, and maybe even opens up new employment opportunities.

They are not entirely wrong: there are many roles that say nothing about computing in
their job titles where a bit of coding knowledge helps to get things done. I spent my life as
a professional physicist in the nuclear industry, but a large part of my daily life involved
trying to understand what was going on inside nuclear reactors by looking at large
amount of data.

The world is drowning in data: modern computer technology means that we can collect it
more rapidly and in large bulk than ever before, but there are not enough people who
know how to make some sense out of the flood. We even have a new discipline called
Data Science” that can be studied at university, which combines computing, mathematics
and statistics. (In fact, many people who graduate in these separate disciplines end up
doing data-science-type roles anyway.)

Commercial life is also increasingly moving on-line, and that needs ever more people to
build web-sites that stand out from the competition, to both promote sales and gather in
the money.

Our factories and warehouses are also being taken over by robots that become
increasingly sophisticated year by year, and by some estimates even many of the
“driving” jobs in modern economies will be shifted to autonomous vehicles within a
decade. You would probably prefer to be in the group who makes and programs robots,
not the group who they make redundant.

That is all very well, but the truth is that when you are making your first steps in coding
these cutting edge applications seem a long way away, and it can be hard to see how the
basic tutorials relate to making semi-intelligent automata. It is much the same as the
difference between slogging away at basic five-finger exercises on the piano and the
skills of the concert soloist. The gaps are, indeed, large and there are few short cuts but
as with learning music, the trick is to find something that gives pleasure and reward at an
early stage and keeps us wanting to do more while developing higher levels of skill.

I believe that there is no harm in having a bit of fun while we learn, and a lot of people are
finding that you can have a lot of enjoyment by using computer programs to generate art.
Furthermore, you can start to produce quite impressive and rewarding results with not a
lot of learning. What’s not to like!

This project will take you from knowing nothing at all, to creating material that you may
well want to hang on a wall. We will need a bit of GCSE mathematics, but nothing
extreme, just basic trig and maybe Pythagoras. If you doing A-level maths, then you will

have an even wider scope of possibilities, but remember that the quality of the art is more
likely to depend on your imagination that your mathematical skills.

The project is a digest of material that can also be found on my personal website Artful
Computing at https://mcellin.me.uk/artfulcomputing/, which also describes a number of
other approaches, ranging from the elementary to those based on university level maths.

Taking a Line for a Walk

The challenge

The image on the left is an example of
the type of thing you might choose to
produce.

The recipe is simple: we tell the
computer to draw a line on the black
background. Not a bright hard line, but
one that is a little bit transparent. then
we do it again, but this time we move
the position of the line by a little bit,
move up or down, side to side and
rotate the angle fractionally and
perhaps change its colour slightly. And

then we do it again, and again and again.
Just one addition: as time goes on, we allow the amplitude of the side-to-side
movements and the length of the line to decay slowly with time.

Apart from the size decay with time, this is the type of algorithm that was sometimes
employed for screen-savers when computer screen were cathode ray tubes and showing
a static image could get it permanently burned into the phosphor. The algorithms had to
be simple because computers were not very powerful.

So what do we need to do this? There are three elements:

1. We need a graphics application for our computer that lets us draw images.

2. We need to know how to draw a line of a chosen length, angle, position and colour.

3. We need to devise an algorithm, to be programmed in our graphics application, which
will move the line around, change its colour and reduce its length over time.

The Tool

I am going to recommend that you install Processing (http://processing.org). Processing
has several advantages which make it a good choice for first steps:

• It is well supported and widely used, with both good on-line tutorials (video and text)
and many books, if that is your preferred learning mode.

• The initial learning curve is fairly low: you can start to get interesting results very
quickly.

https://mcellin.me.uk/artfulcomputing/
http://processing.org

• It does, however, teach you a variant of the Java programming language, which is
widely used elsewhere, and is so similar to other major computer languages, such as
C++, that learning it is a useful step on the way to mastering some of the skills of
professional programmers.

• Processing actually supports a number of alternative languages for those who already
have some skills. You can drive it with a variant of Javascript, widely used in web
programming and create animations that can be embedded in web pages. Or, if you
have come across Python in school work, that can also be employed in Processing
work.

Go to the website and follow the instructions for downloading and installing Processing.

First, I suggest that you watch the three short video tutorials on the Tutorial Page.

Then, you should work your way through at least the following text-based tutorials:

• Getting Started.

• Processing Overview. You get to draw your first lines here.

• Coordinate System and Shapes. This is about how to place things where you need
them to be.

• Color. You have various options for specifying the colour of shapes, including mixing
different amounts of red, green and blue. You also learn about opacity - whether
drawing a shape hides what it behind it (high opacity) or lets it show through (low
opacity).

• 2D Transformations. You can manage without this, but it may make your program
easier to write.

• Trigonometry Primer - for those who have forgotten it.

You also need to know about the Reference pages, where you find detailed instructions
on drawing different types of shapes etc. - see for example line() for drawing lines.

Having installed Processing and worked through the above tutorials we should have
achieved our Elements 1 and 2 above. You can now draw a line where you want it to
appear and with a colour and opacity of your choice.

You should also be aware that Processing has already simplified one of our jobs: we want
our image to build up over time, and you should have learned that Processing has a built-
in time-loop. Its draw() function goes round and round (at about 60 times per second if it
can keep up) and draws whatever it is instructed to draw on the screen each time.

In the early Processing tutorials this draw cycle was called implicitly. You should, however,
now get into the habit of having explicit setup() and draw() functions in your program. You
will need these to be separate for your more complicated images, so you might as well
start getting used to it now.

Remember that the instructions inside setup() are executed just once when Processing
starts up, while draw() goes round and round until you stop the program. We can use
setup() to set the values of variables that are not going to change - or the initial values of
variables that will change over time.

https://www.processing.org/tutorials/
https://www.processing.org/tutorials/gettingstarted/
https://www.processing.org/tutorials/overview/
https://www.processing.org/tutorials/drawing/
https://www.processing.org/tutorials/color/
https://www.processing.org/tutorials/transform2d/
https://www.processing.org/tutorials/trig/
https://www.processing.org/reference/
https://www.processing.org/reference/line_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html

You also need to remember what they said about the scope of variables if you want to set
a value in setup() and refer to it or change it in draw(). If this is what you want to do (I want
to do it all the time) then the variables have to be declared outside either setup() or draw()
because that gives them global scope - they can be seen by any part of the program. If
you declare something within either setup() or draw() then that variable is seen only within
the local scope of that function.

Now the real work begins with Element 3: devising and programming an algorithm to
produce the image we wish to create.

Designing Our Program

There are two distinct aspects to the design of relatively small programs. (Very large
systems raise much broader questions - but these are the province of professional
software engineers.)

• Firstly, we need to think about the information that the program must manage.

• Secondly, we must devise algorithms to manipulate that data.

Novice programmers tend to focus on the algorithms - the programming instructions that
you write - while experienced professionals know that the key to good program design is
usually working out what data you will need, how to get it into the program, how to
organise it within the program, then how to transform it (the algorithm) and finally how to
move the result out into the world (in our case how to draw on the screen and perhaps
how to save a copy of our image to a JPEG file on disk).

So let us think about what we will need to tell the program. I my first thoughts are along
these lines:

• We always need to tell Process our desired drawing area size (the number of pixels
along horizontal and vertical axes). We usually do this, as the tutorials show, in the
setup() function. Furthermore - a subtlety - we normally do this by putting explicit
integers into the size() function. These two numbers (the width and the height) will
determine the entire scale of what we wish to do with our drawing. Fortunately, once
we have called size() the dimensions that we will work within are held in global
variables width and height that are accessible anywhere within the program.

• Every dimension we use from now on, such as the length of the lines we draw, will be
scaled by one of these drawing area dimensions. (So, we might say that our initial line
length will be 90% of the smaller of the two drawing area dimensions, width or height,
for example.) We will calculate the initial line length in setup(). We ought to define this
as a global variable (that is declared outside setup() and draw() so its value can be
seen anywhere in the program).

• I want my line to rotate around as I draw it on each cycle of draw(), so I will need to
define the rotation speed. Speed with respect to what? It is useful to know that by
default Processing tries to draw a new frame in the drawing area about 60 times per
second. (This can be altered in setup() by calling the frameRate() function, and you
can always find the current rate in the global variable frameRate, the latter variable will
turn out to be useful.) It is useful to know that there is a frameCount predefined global
variable which tells you how many times draw() has been called since the program
started running. Hence, a measure of the number of seconds since we started running
the program is simply:

https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/size_.html
https://www.processing.org/reference/size_.html
https://www.processing.org/reference/width.html
https://www.processing.org/reference/height.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/setup_.html
https://www.processing.org/reference/frameRate_.html
https://www.processing.org/reference/frameRate.html
https://www.processing.org/reference/frameCount.html
https://www.processing.org/reference/draw_.html

	 	 	

• This time value, which you should calculate every time you go into draw(), turns out to
be useful in just about every Processing program that I create. It should become part
of a stereotypical bit of code that you use in all your programs. We will be able to use
it in several ways:

• We can use it to calculate the angle of the line that we draw using an expression
something like: theta = 360 * time/rotationPeriod; where rotationPeriod is the time
it would take the line to rotate through a full circle. Even better, for reasons that
become clear below, would be: theta = TWO_PI * time/rotationPeriod; which gives
us or angle in radians rather than degrees - this is usually much more convenient in
programming that involves trigonometry expressions. (Note that TWO_PI is a built-
in global constant in Processing, along with some other useful values, because we
need to use the value of so frequently.)

• We can use it to determine the coordinates of the starting point from which we
draw our line. We will want this position to move around the screen as time
advanced. A simple way of doing this might well be two expressions for the
starting point of the line:

;
;

In these expressions, x0 and y0 describe the horizontal and vertical coordinates of
the point from which we start drawing our line. They use the built-in sin()
trigonometry function to describe side-to-side and up-and-down oscillations of the
starting point. If you recall the way sin() works you will see that it comes back to
the same place every time the function argument - inside the brackets - is a
multiple of , which happens in the horizontal direction when time is a multiple of
xPeriod and in the y direction when time is a multiple of yPeriod. This is often
known as a harmonic motion because sine waves are quite good for describing
musical sounds.. The size of the side to side movement is given by xAmp and the
size of the y movement by yAmp, so we have also identified four more
configuration variables which we will need to declare and to which we will need to
give initial values. These are xAmp, yAmp, xPeriod, yPeriod. It is a good idea to
specify xAmp and yAmp in terms of a fraction of the size of the drawing area, so
that if you choose to make a bigger drawing area everything will expand
accordingly.

• We will also use time to change to line length and probably also the motion
amplitudes. A good way to do this would be to define an expression for a value
that decreases over time, which we will use to multiple to motion amplitudes and
the initial line length before using them to draw. Something like:

The ‘exponential’ function exp() starts with a value 1, when the quantity inside the
brackets is 0 - i.e. time=0, and then for each period of decayRate it decreases by a
factor of about 1.713… and goes on forever, never quite getting to zero. We do not
need to know the good mathematics concerning why it behaves like this but it is
just useful behaviour. The important point is that for each period of decayRate, we
will notice some change in behaviour, nether too fast nor too slow. You will also see

t ime = f rameCount /f rameRate

2π

x0 = x Amp * sin(T WO_PI * t ime /xPeriod)
y0 = yAmp * sin(T WO_PI * t ime /yPeriod)

2π

decayFact = exp(−t ime /decayRate);

https://www.processing.org/reference/draw_.html
https://www.processing.org/reference/TWO_PI.html
https://www.processing.org/reference/sin_.html
https://www.processing.org/reference/sin_.html
https://www.processing.org/reference/exp_.html

that we have again introduced the need for another global variable decayRate
which has to be given an initial value.

• We may also use the time value to specify changes in the colour of the line we
draw. This will be an exercise for the student.

• Although I started by thinking about the data we would need, we have already started
to stray into the area of algorithms by deciding that we will probably want to use built-
in functions such as sin() and exp(). You can never quite separate the two, of course,
because algorithms imply a need for configuration data, and the need to turn input
data into output data (in our case the position, length orientation and colour of a line)
implies the algorithm. I do, however, want to reinforce the viewpoint that I recommend:
what data do we want to start with, what data do we need to end up with, derive the
need for the particular algorithm from that. This nearly always works best for relatively
simple programs, and in the design of complex software it is still important: we just
tend to be somewhat more formal about the way we analyse our information needs
and the way it interacts will algorithms.

There are just a couple of points remaining that are strictly in the area of algorithm design.
You would trip over both almost immediately if you tried to start programming. Firstly, we
have talked about specifying the angle at which we draw our line. Just how do we do this.
There are two ways, both of which work equally well in this case, and both of which might
turn out to be a better solution for particular more complicated design problems.

• The Processing line() function (you will also hear it referred to as a “graphics primitive”
because it is a basic drawing operation) needs start and end (x,y) coordinates. We
know how to get the start coordinates - the have explored that above. How do we get
the end coordinates. Here we can just use basic trigonometry (look up the tutorial if
you need to) with xEnd = lineLength*cos(theta) and yEnd = lineLength*sin(theta).
(Remember that here, lineLength, is the initial line length multiplied by our decay
factor.) There is one potential pitfall here: you may, in spite of my advice above, have
specified the relation between line angle and line rotation period so that the angle
theta comes out in degrees. In all programming languages, however, the built-in
trigonometry functions expect to get angle in radians. (This is not just a design to be
arcane and inconvenient, there are compelling mathematical reasons why this is
exactly the right thing to do.) So, before putting an angle specified in degrees into a
trig function you must multiply it by a conversion factor . This is needed so
often that I always define a global variable degToRad and set its value as above in
setup().

• The second option is to avoid the trig calculations entirely by rotating our entire
coordinate system such that the x-axis now lies in the direction we want to draw our
line. For this we use the rotate() function. See the 2D Transformations tutorial. We can
now specify our line by just drawing on the x-axis - a trivial matter. This is in a number
of ways the more elegant approach that is often useful in more complicated situations.

• The `transformation’ approach also lets us tack another issue that you would soon
notice if you immediately tried to follow the instructions above, without thinking too
deeply. Our expressions that define the starting point of our line drawing use sin()
function that take both positive and negative values as time advances. However, the
default coordinate system in processing puts the zero of the coordinates at the top left
hand corner of the drawing area. It is a good idea therefore to use the translate()
function to move our origin to the centre of the drawing area.

π /180

https://www.processing.org/reference/line_.html
https://www.processing.org/tutorials/trig/
https://www.processing.org/reference/rotate_.html
https://www.processing.org/tutorials/transform2d/
https://www.processing.org/reference/translate_.html

There is just one more thing you may need: how will you save your finished art work? You
will probably need to use the saveFrame() function, but you will have to choose whether
you invoke this at a fixed time after starting, or, say, whenever you press and release the
“s” key (my preference). I will you to read up how to capture “keyboard events” - but look
up keyReleased() event-capturing function that is called whenever a key is released. (Use
the related event-trapping function keyPressed() with care, because if you keep the key
pressed down it is called each time draw() goes around it loop and is executed multiple
time. This can be very useful - but not here.)

Take it From Here!
You will soon find that you can produce a large variety of images by making slight
variations in the configuration parameters. Here are a few things to explore:

• If the periods of the side-to-side and up-and-down motions of the line start are related
in some simple ratio (e.g. 2:1 or 3:4 and so on) the trajectory is a Lissajous Curve (look it
up) and it will draw over itself eventually (apart from the overall scale decay).

• You can now play with the period of rotation and see what happens when it does (or
does not) relate to one of the motion periods.

• The colour of the line can be determined by RGB colour values fed to the stroke()
function. You can make each of the red, green, blue components of colour vary
harmonically around some central value, with periods that may (or may not!) relate to
other periods in the image. See my Lissajous Curves gallery for examples.

• You might prefer to use the alternative HSB colour mode, where harmonic variations of
hue, saturation and brightness will produce potentially quite different visual effects.

There are many variations that can now be played on the central theme.

• You might work out how to produce a line that fades to nothing along its length, or
changes colour along its length.

• You might choose not to use a simple line, but a wavy shape. See for example the
image to the below of one of my Generative Waves image galleries.

https://www.processing.org/reference/saveFrame_.html
https://www.processing.org/reference/keyReleased_.html
https://www.processing.org/reference/stroke_.html
https://mcellin.me.uk/artfulcomputing/index.php/gallery/generative-art/event/generative-art/LissajousCurves
https://mcellin.me.uk/artfulcomputing/index.php/gallery/generative-art/event/generative-art/107744984116454049096@GenerateWavesS6

Further Explorations
See my own website Artful Computing for some ideas and work that I have myself
produced. In particular, see the Links page, and the Tools and Resources collection where
you will find a page about Books and some pointers to mathematical art websites. (I have
tried to keep to web sites that have some longevity - but interesting websites come and
go quite regularly. You can also find material on Instagram by searching for tags such as
#generativeart, #algorithmicart, #mathematicalart, #processing and so on, while there
are a number of Facebook groups dealing with computer generated art using both
Processing and other tools, such as those specialising in 3D animation.

https://mcellin.me.uk/artfulcomputing/
https://mcellin.me.uk/artfulcomputing/index.php/links
https://mcellin.me.uk/artfulcomputing/index.php/art-maths-and-computing/other-published-resources
https://mcellin.me.uk/artfulcomputing/index.php/artful-computing/other-resources/books
https://mcellin.me.uk/artfulcomputing/index.php/art-maths-and-computing/other-published-resources/mathematical-art

	Taking a Line for a Walk

