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1 Introduction

I want to take a different approach to solving for the primary angle of the
cosmic ray shower, using 3D cartesian coordinates for each of the stations.
In our XYZ coordinate system, the Z axis will be parallel to the Earth’s
rotation axis, the X axis will be the line from the Earth’s centre to 0,0
latitude and longitude (i.e. on the equator and the Greenwich meridian).
The Y direction with point East (perpendicular to the Z and X axes). These
are called Earth Centred Earth Fixed coordinates. We choose this system
because once we have worked out the direction of the shower, all we have to
do to get celestial coordinates is a rotation around the Z axis.

The three stations A, B, C are assumed to have coordinates (ax, ay, az),
(bx, by, bz) and (cx, cy, cz). These are easy to work out from the geographical
latitude,φ, longitude East, θ, and the Earth’s radius, R. That is:

x = (R+ ∆R).cos(φ).cos(θ) (1)

y = (R+ ∆R).cos(φ).sin(θ) (2)

z = (R+ ∆R).sin(φ) (3)

We have corrected for height above the ground by increasing the radius, R
by the height ∆R.

We now want to work out a shower direction in this coordinate system
represented n the form of a vector d of unit length from the origin pointing
to the arrival direction of the shower. The unit length means that, which
means that: d.d = d2

x+d2
y+d2

z = 1, in terms of the vectors x,y,z components.
Let us assume that the shower is first detected at station A, at time

t=0, and subsequently at station B at time tB and station C at time tC . See
Figure 1 for the geometry, Note that the shower in this diagram is moving
bottom left to top right along the line of the grey arrow.
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Figure 1: Cosmic Ray Shower Geometry

In order for us to have a valid calculation we have to assume that the
cosmic ray shower front moves at essentially the speed of light, which we
will denote here by the conventional symbol used by physicists, c. Given the
accuracy with which time differences can be measured this will be sufficiently
good. The shower then moves as a narrow front - almost like a circular plate
touching first A, then B then C. So, the distance Aβ in the diagram will be
c.tB and AΓ will be c.tC . How do we express these distances in terms of the
angle at which the shower is moving?

2 Equation of Motion of a CR Shower Front

The general equation of a family of parallel 2D planes can be expressed as:

p.x+ q.y + r.z = s (4)
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where the values of p,q and r stay the same and the value of s changes to
distinguish the planes. Note that there is a certain amount of ambiguity in
these values: we could divide through the equation by a constant and still
get effectively the same set of planes. This will all drop out in the wash
later, since all we are interesting in is the ratios of these values to determine
the direction of the shower.

At this point we might note that solving for direction with a four-detector
coincidence might be easier than handling the three detector case. With just
three detectors there is an inevitable ambiguity in the values of p:q:r. You
will always get at least two solutions for the ratios because the same set of
time differences in the shower arrival times could be produced by a shower
approaching from below the detector arrays as a shower approaching from
above. Hence, we expect to end up with an equation with two solutions (a
quadratic) for the three detector case. In the four detector case, we have
more equations and as long as the forth detector is not in the same plane as
the other three there is a unique solution that can be found by a relatively
straightforward solution of four simultaneous equations. We will look at this
case elsewhere.

Hence, when we substitute the three detector locations into the equations
we get:

sA = p.xA + q.yA + r.zA (5)

sB = p.xB + q.yB + r.zB (6)

sC = p.xC + q.yC + r.zC . (7)

Note that the (xB, yB, zB) and (xC , yC , zC) are NOT the same as the (x′B, y
′
B, z

′
B)

or (x′C , y
′
C , z

′
C) marked on the diagrams at which the front surfaces inter-

sect the axes. These intersection points are related to the orientation of the
shower front and the values of p,q and r. So,

x′A = sA/p y′A = sA/q z′A = sA/r (8)

x′B = sB/p y′B = sB/q z′B = sB/r (9)

x′C = sC/p y′C = sC/q z′C = sC/r. (10)

What we want to do now is to derive the distances Aβand AΓ in terms of
these parameters, and then we can solve for p:q:r and get the direction of
the shower,

Now let us think about the point, Γ, which is in the plane of the shower
front at time tC and the line to station A is a perpendicular to the shower
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front, and consider the triangles AΓX ′
C and AΓΓC . These are both right-

angle triangles and are clearly similar, so:

AΓ

xΓ − xA
=
x′C − xA
AΓ

=⇒ xΓ − xA =
AΓ2

x′C − xA
=⇒ xΓ − xA =

p.AΓ2

sC − sA
(11)

Since, from above, X ′
C = sC/p (and there are exact equivalent derivations

of the Y and Z directions) we can immediately write:

xΓ − xA =
AΓ2.p

sC − sA
, yΓ − yA =

AΓ2.q

sC − sA
, zΓ − zA =

AΓ2.r

sC − sA
. (12)

Adding the square of these together must also give the squared distance
from A to Γ by Pythagoras:

AΓ2 = AΓ4.(p2 + q2 + r2)/(sC − sA)2 (13)

or:

AΓ2 = (sC−sA)2/(p2 +q2 +r2) =⇒ AΓ = (sC−sA)/
√
p2 + q2 + r2. (14)

We know how to find sC , we just substitute from equation 7, which repre-
sents the shower front at time tC , to get:

AΓ =
p.(xC − xA) + q.(yC − yA) + r.(zC − zA)√

p2 + q2 + r2
. (15)

This is the 3D generalisation of the equations 4.3 and 4.4 in the Primary
Particle Angle report by Koos Kortland.

We could just as well have worked with the coordinates for detector B
instead of detector C to get:

Aβ =
p.(xB − xA) + q.(yB − yA) + r.(zB − zA)√

p2 + q2 + r2
. (16)

It is worth noting at this point that because we are going to solve for
angles we only need ratios of p:q:r. So, for example, the angle, φ, between
the direction of the shower (along the line Aβ and AΓ) can be found from

cos(φ) =
zC − zA
AΓ

=
AΓ.r

sC
. (17)

Working through the substitutions using the above relations quickly gives:

zC − zA
AΓ

=
r√

p2 + q2 + r2
(18)
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or, dividing the left hand side above and below by p we get:

cos(φ) =
zC − zA
AΓ

=

(
r
p

)
√

1 +
(
q
p

)2
+
(
r
p

)2
. (19)

The azimuth angle, θ, (the angle with the X axis of the projection of AΓ on
the XY plane) is derivable from equation 12 as:

tan(θ) =

(
yC − yA
xC − xA

)
=

(
AΓ2.q

sC − sA

)(
sC − sA
AΓ2.p

)
=
q

p
. (20)

In order to solve for the p:q:r ratios we now just state equations 15 and
16 for the three planes at time t = 0, t = tB and t = tC , substituting for the
distances AΓ and Aβ with the respective shower flight times:

c.tB =
p.(xB − xA) + q.(yB − yA) + r.(zB − zA)√

p2 + q2 + r2
(21)

c.tC =
p.(xC − xA) + q.(yC − yA) + r.(zC − zA)√

p2 + q2 + r2
(22)

We now have the task of solving for p:q,r from these three equations in
three unknowns. Since we only need the ratios q/p and r/p we have just
two unknowns for the two equation, so a solution is feasible. Since we only
ever have differences in the X,Y,Z coordinates we can also replace (xB−xA)
by ∆XB etc. It is better, therefore to rewrite equations 21 and 22 as:

c.

√
1 +

(
q

p

)2

+

(
r

p

)2

=
∆xB +

(
q
p

)
.∆yB +

(
r
p

)
.∆zB

tB
(23)

c.

√
1 +

(
q

p

)2

+

(
r

p

)2

=
∆xC +

(
q
p

)
.∆yC +

(
r
p

)
.∆zC

tC
. (24)

To simplify future manipulations I am going to replace q/p by Q and
r/p by R:

c.
√

1 +Q2 +R2 =
∆xB +Q.∆yB +R.∆zB

tB
(25)

c.
√

1 +Q2 +R2 =
∆xC +Q.∆yC +R.∆zC

tC
. (26)

Here we have two equations in two unknowns Q and R. There ought to be
a solution - though the square root looks like it is going to make things a
little messy.
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3 Solutions

From equations 23 and 34 subtract to get the simpler form:

0 =

(
∆xC
tC
− ∆xB

tB

)
+Q.

(
∆yC
tC
− ∆yB

tB

)
+R.

(
∆zC
tC
− ∆zB

tB

)
(27)

which we could also write as:

Q = −R. (∆zC .tB −∆zB.tC)

(∆yC .tB −∆yB.tC)
− (∆xC .tB −∆xB.tC)

(∆yC .tB −∆yB.tC)
. (28)

Again for the sake of simplicity of substitution later on, I will define two
coefficients consisting entirely of known quantities:

U = − (∆zC .tB −∆zB.tC)

(∆yC .tB −∆yB.tC)
(29)

V = −(∆xC .tB −∆xB.tC)

(∆yC .tB −∆yB.tC)
. (30)

When programming this solution we will be able to declare set the values of
variables called U and V from these equations. Note, however, because these
are ratios we have to guard against the possibility that the denominator may
be close to zero. In practice, we can usually recast the relationship between
Q and R (equation 28) so that a numerator goes to zero rather than a
denominator. These situations alway occur in special cases, where we do
not need to go on to solve the quadratic equation below: we can deduce the
p:q:r ratios directly - see the ‘Sanity Check’ in Section 3.1 below.

So, we can now write:
Q = R.U + V. (31)

3.1 Sanity Check 1

We can do a sanity check on this equation. Let us assume that all the
detectors are in the XY plane (∆zABC = 0), and also that ∆yB = 0 so
station B is on the X axis and ∆xC = so stations C is on the Y axis, and
for convenience ∆xB = ∆yC (so we have an isoscolese triangle). This means
that U=0, and

Q = V =
tC
tB

(32)

This is fine! If tC = tB the shower is approaching along a line equally spaced
from the X and Y axes, and by substituting Q = q/p = 1 back into equation
20 we would calculate that θ = 450. Similarly, if tC = 0 it means that the
shower is moving along the X axis and we would calculate θ = 0, while if
tB = 0 we would calculate θ = 900. So far it looks good.
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3.2 Continuing the solution..

There now does not seem to be any way forward in the solution for R=(r/p)
other than to square out equation 25 or 26 and back substituting from 28
and then solving the quadratic in R=(r/p). Here we will follow through
from equation 26, but the equivalent substitution in equation 25 obviously
goes through in the same way and we will be able to write down the answer
immediately.

1 +Q2 +R2 =

(
∆xC
c.tC

)2

+Q.2
(

∆yC
c.tC

)2

+R2

(
∆zC
c.tC

)2

+ 2.Q.

(
∆xC
c.tC

)(
∆yC
c.tC

)
+ 2.R.

(
∆xC
c.tC

)(
∆zC
c.tC

)
(33)

+ 2.Q.R.

(
∆yC
c.tC

)(
∆zC
c.tC

)
.

Collecting terms in R:

R2

[
1−

(
∆zC
c.tC

)2
]
− 2R.

[(
∆xC
c.tC

)(
∆zC
c.tC

)]

+Q2

[
1−

(
∆yC
c.tC

)2
]
− 2Q.

[
R

(
∆yC
c.tC

)(
∆zC
c.tC

)
+

(
∆xC
c.tC

)(
∆yC
c.tC

)]

+

[
1−

(
∆xC
c.tC

)2
]

= 0 (34)

Now we have to substitute for Q from equations 31:

R2

[
1−

(
∆zC
c.tC

)2
]
− 2.R.

[(
∆xC
c.tC

)(
∆zC
c.tC

)]

+(U2R2 + 2UV R+ V 2).

[
1−

(
∆yC
c.tC

)2
]

−2(U.R+ V ).

[
R

(
∆yC
c.tC

)(
∆zC
c.tC

)
+

(
∆xC
c.tC

)(
∆yC
c.tC

)]
+

[
1−

(
∆xC
c.tC

)2
]

= 0 (35)
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Collecting terms in R2 and R, we get:

R2

[
1−

(
∆zC
c.tC

)2

+ U2

(
1−

(
∆yC
c.tC

)2
)
− 2U

(
∆yC
c.tC

)(
∆zC
c.tC

)]

+2R

[
UV

[
1−

(
∆yC
c.tC

)2
]
− V

(
∆yC
c.tC

)(
∆zC
c.tC

)
− U

(
∆xC
c.tC

)(
∆yC
c.tC

)
−
(

∆xC
c.tC

)(
∆zC
c.tC

)]

+V 2

[
1−

(
∆yC
c.tC

)2
]
− 2V

(
∆xC
c.tC

)(
∆yC
c.tC

)
+

[
1−

(
∆xC
c.tC

)2
]

= 0 (36)

Since we will be calculation the answers using software, there is now little
point in writing out the explicit quadratic solution. In practice, we would use
the above equation to define values for variables a,b,c in the quadratic form
Ax2 +Bx+C and then substitute these into x = (−B ±

√
B2 − 4AC)/2A,

with:

A =

[
1−

(
∆zC
c.tC

)2

+ U2

(
1−

(
∆yC
c.tC

)2
)
− 2U

(
∆yC
c.tC

)(
∆zC
c.tC

)]
(37)

B = 2

[
UV

[
1−

(
∆yC
c.tC

)2
]
− V

(
∆yC
c.tC

)(
∆zC
c.tC

)
− U

(
∆xC
c.tC

)(
∆yC
c.tC

)
−
(

∆xC
c.tC

)(
∆zC
c.tC

)]
(38)

C = V 2

[
1−

(
∆yC
c.tC

)2
]
− 2V

(
∆xC
c.tC

)(
∆yC
c.tC

)
+

[
1−

(
∆xC
c.tC

)2
]

(39)

For convenience of programming we can pre-compute variables

XC =
∆xC
c.tC

, YC =
∆yC
c.tC

, ZC =
∆zC
c.tC

(40)

and simplify the expressions to get the more convenient forms

A =
[
1 + U2 − (ZC + UYC)2

]
(41)

B = 2UV − 2
[
UV.Y 2

C + V YCZC + UXCYC +XCZC

]
(42)

C = 1 + V 2 − [V YC +XC ]2 (43)

If we had chosen to substitute for Q in equation 25 we would obviously
get and equivalent set of results, where every occurence of a term relating
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the detector C is replaced by the equivalent term for detector B. These are
likely to give more accurate results when tB > tC (especially if tC is very
close to zero).

A =
[
1 + U2 − (ZB + UYB)2

]
(44)

B = 2UV − 2
[
UV.Y 2

B + V YBZB + UXBYB +XBZB

]
(45)

C = 1 + V 2 − [V YB +XB]2 (46)

Use this alternative formulation when tB > tC , and both are greater than
0. (If both tB = tC = 0, then we immediately deduce that φ = 0 and θ
is undefined - i.e. can take any value (just as longitude is undefined at the
Nortth Pole).

Having solved for R, we can get Q from equation 31, and then solve for
the declination azimuth angles φ and θ using equations 19 and 20.

3.3 Sanity Check 2

Let us do another sanity check, again using our stations that all have
∆zABC = 0, ∆xC = 0, ∆yB = 0 and ∆xB = ∆yC as before, and again
we will set the shower up so that Q = q/p = 1 (i.e. with tC = tB)
coming equally between the X and Y axes), though this time we will go
on to consider the cases where R = r/p 6= 0. Referring back to the
equations defining U and V (29 and 30) we immediately get U=0 and
V = ∆xB.tC/∆yC .tB = tC/tB = 1. The equation 36 for R reduces to:

R2 =

(
∆yC
c.tC

)2

− 2 (47)

Note that c.tC can never be larger than yC/
√

2 for a real coincidence
detection because of the way we have set up the geometry so this expression
is always positive. When tC = 0 (that is the shower is moving pretty much
along the Z axis) the value of R goes to infinity. Now look at equation
19: both the top and the bottom will be dominated by the R terms and
the ratio will tend to R/

√
R2 which tends to 1, which results in cos(φ) =

1 =⇒ φ = 0 as we would expect. On the other hand, when the shower is
moving in the XY plane, c.tC = yC/

√
2, so R = 0, and from equation 19,

cos(φ) = 0 =⇒ φ = π/2, which again is what we would expect.
We can also check what happens when we put the B and C stations on the

X and Z axis respectively, with ∆yB = ∆yC = ∆zB = 0 and ∆xB = ∆zC .
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Equation 28 at first sight makes p/q undefined, but we can multiply through
by (∆yC.tB = ∆yB.tC) and get:

R = −(∆xC .tB −∆xB.tC)

(∆zC .tB −∆zB.tC)
=
tC
tB

(48)

This looks rather similar to equation 32, which is reassuring, and if we
choose to make Q = q/p = 0 (as we are free to do - it means a shower
moving in the XZ plane). We can go back to equation 19 and turn it into
cos(φ) = R/

√
1 +R2. Using the trig. identity cos(x) = 1/

√
1 + tan(x)2

then turns this into:

tan(φ) =
1

R
(49)

which is indeed and equivalent form to that we had previously, allowing φ
to vary between 0 and π/2 as we might expect.

I think that this suggests that the relations above are all OK, and I get
the same answer when I use a computer algebra package, so we are probably
good to go.

When programming the expression there are obviously potential pitfalls
associated with dividing by zero in certain shower+detector array geome-
tries. (For example, when times such as tB and tC go top zero.) One has to
trap these special cases before trying to solve the above quadratic and make
the correct angle deduction immediately.

It would also be a good exercise to understand the sensitivity of the
solutions to small timing errors.

Coincidences are recorded with respect to GPS time derived from satel-
lite signals. Although the GPS clocks are extremely accurate (within nano-
seconds) there signals have to propagate to the detector stations through the
atmosphere which very slightly slows down radio waves. The propagation
delay is unfortunately rather variable, so in extreme cases the GPS time may
be in error by up to 100 nano-seconds. Sophisticated GPS receivers, such as
those used by the military, commercial ships and aircraft, and professional
surveyors can correct to some extent for this error. We do not have this
type of receiver.

It would be interesting and useful to take real data and vary some of the
time delays by, say 10-20 nano-seconds and see what effect this has on the
reported directional solutions. This would tell you the extent to which you
can believe the accuracy of the directions you calculate.
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4 Solving for Right Ascension and Declination

See figure 2 on page 11 taken from Unsöld (Unsöld 1969). The angles we have
calculated, φ and θ are not directly the celestial coordinates. We defined the
angle φ as the angle made by the shower direction with the rotation axis of
the Earth, but the astronomical declination, usually denoted by δ, is defined
as the angle with the equatorial plane, so:

δ =
π

2
− φ. (50)

The angle θ is also not the astronomical right ascension coordinate (usu-
ally denoted by the symbol α) because our xyz coordinate system is rotating
with the Earth, and the projected x-axis sweeps round the Earth’s equatorial
plane projected onto the sky once every sidereal day.

Figure 2: Celestial Coordinates.
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The next bit of reasoning is basically straightforward - but it is easy
to get confused with definitions and use the wrong signs. Here are the
definitions:

North Celestial Pole is the projection of the Earth’s rotation axis through
its North Pole onto the sky. Observationally, in the northern hemi-
sphere, all the starts appear to rotate around this point (which is
approximately marked by Polaris, the pole star).

Zenith is the point directly over your head.

Meridian is the great circle on the sky running from the north celestial
pole, though the meridian, down to due South. If you stand looking
due South and move your head up and down, your point of view is
moving up and down the meridian.

Hour Circle of an astronomical object is the great circle on the sky run-
ning through the north celestial pole down through the position of the
object of interest.

Hour Angle (HA) is the angle between the meridian and the hour circle
of the object. It can be measured in degrees, or hours, minutes and
seconds. (The use of time as a measurement is very convenient when
doing astronomical observations because the hour angle is just the
amount of time that has passed since the object rotated through the
meridian.) Since astronomical object appear to move from East to
West on the sky, hour angle increases in the westerly direction.

Vernal Equinox also known as the First Point of Aries, denoted by the
symbol à, is the point on the Celestial Equator from which right
ascension coordinates are measured. (It is actually defined as the
point where the Sun crosses the Celestial Equator in the Spring.)

Right ascension, usually denoted by the symbol α, is conventionally
measured in hours minutes and seconds (and this is always used in
celestial catalogues) but is easily converted to degrees, since 360o is
equivalent to 24 hours. Right ascension increases going round to the
east (or looking down from the north pole it increases going anticlock-
wise). The First Point of Aries crosses the meridian when the local
sidereal time (LST) is 0 hours. If we wait until the sidereal time on
our astronomical clock equals the right ascension of our object then
we will find the object right on the meridian.
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Hence it is possible to deduce the following simple relationship:

α = LST −HourAngle (51)

We have actually defined our xyz coordinate system as if we were standing
on the Greenwich Meridian (the line of 0 longitude) since we required our
x axis to run from the centre of the Earth through the point of 0 longitude,
0 latitude on the equation. Even though many of our detectors are not
actually on this meridian, everything refers back to it. Hence, our local
sidereal time is the same as Greenwich Mean Sidereal Time

At this point it is easiest to look up standard formula for Greenwich Mean
Sidereal Time (in units of hours), as used by professional astronomers. The
formula is very accurate because it takes account of phenomena such as the
(very) gradually slowing rotation rate of the Earth.

GMST = (18.697374558 + 24.06570982441908D)modulus(24) (52)

where D is the number of days (including fractions of a day) since 12 Noon
(Universal Time) on 1st January in the year 2000. This is known as the Ju-
lian Day Number with respect to the year 2000 epoch1. The modulus(24)
means divide by 24 and keep only the fractional part of the result, it re-
duces the GMST value to the range 0...24. (That is, we take out any whole
multiples of 24 from the answer.)

Various sources on the Web, including the Wikipedia Julian Day page,
provide moderately intricate algorithms for determining the Julian Day from
the calendar date, but for single observations it often easiest just to look up

1Beware! If you come across the term Julian Day be careful that you get the right
epoch, that is, the point from which days are counted. There are at least eight other epoch
definitions used at various times by various subgroups of the astronomy community. The
original definition of Julian Days used noon on January 1st 4713BC since it is the starting
point of a number of astronomical cycles and also before any historical date associated
with an astronomical observation. Using Julian Days to log astronomical observations
avoids difficulties with working out long time intervals over periods including leap years
and so on. The Julian Day starts at noon because until recently most astronomy took
place at night and it was inconvenient to have a single series of observations on the same
night being logged as on two different days. This reasoning is now less compelling with
instruments such as radio telescopes and satellite observatories that work 24 hours a day,
but these days computers keep things straight.

The trouble with the original Julian Day definition is that the numbers become large.
For example the Julian Day number for 12:00 UT on January 1, 2000, was 2,451,545.
Hence, it is often more convenient when tabulating data to refer Julian Days to a later
epoch (such as the start of the new millennium). As explained earlier there are many
possible choices found in the astronomical literature. You need to check which one is in
use, and a well reported research paper will always make it clear.
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one of the on-line conversion utilities such as, for example, from the US
Naval Observatory.

Hence if we know the the Julian Day and the hour angle we can find the
right ascension. We have calculated a value of θ, which is the angle going
eastwards from the x axis to the hour circle of our shower direction. The
hour angle is measured positive going westwards, so the hour angle is just
the negative of this value.
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