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1 Introduction

We will use the 3D cartesian coordinates for each of the stations in order to
do a direct solution for cosmic ray shower direction in a coordinate system
that is easy to relate to celestial coordinates. In our XYZ coordinate system,
the Z axis will be parallel to the Earth’s rotation axis, the X axis will be
the line from the Earth’s centre to 0,0 latitude and longitude (i.e. on the
equator and the Greenwich meridian). The Y direction with point East
(perpendicular to the Z and X axes). These are called Earth Centred Earth
Fixed coordinates. We choose this system because once we have worked out
the direction of the shower, all we have to do to get celestial coordinates is
a rotation around the Z axis.

The previous direct solution scheme that I described has two disadvan-
tages: firstly, the algebra is moderately complex; secondly, it generates a
solution for a ratio Q/P, where Q is the projection of the a unit vector de-
scribing the shower direction onto the Y axis, and P is the projection of this
vector onto the X axis. The problem here is that when we wish to calcu-
late the angles describing the shower direction (hour angle in the equatorial
plane and declination the angle made with this plane) there is an ambiguity
in that hour-angle = arctan(Q/P), which will produce the same result if Q
and P are both inverted in sign. One needs to disambiguate solutions by
checking which of the two ambiguous directions generates the known time
delays which specify the problem.

The scheme described here is in essence very similar, but it keeps the
unknowns P, Q and R separate. This fortunately leads to algebra which is a
bit (but not much) simpler, but comes with a different complication. As be-
fore, we have to eliminate two of P, Q and R to solve for the remaining value
before back-substitution for the other values. We can choose to solve for any
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of P, Q or R, but for each choice (and its associated elimination scheme)
there are detector geometries lead to undefined solutions. This means that
we need to be prepared to switch the choice of variable elimination according
to the detector configuration with which we are dealing. This is not much
of a problem, but it does mean that we have to write down three alternative
solution schemes.

The three stations A, B, C are assumed to have coordinates (ax, ay, az),
(bx, by, bz) and (cx, cy, cz). These are easy to work out from the geographical
latitude,φ, longitude East, θ, and the Earth’s radius, R. That is:

x = (R+ ∆R).cos(φ).cos(θ) (1)

y = (R+ ∆R).cos(φ).sin(θ) (2)

z = (R+ ∆R).sin(φ) (3)

We have corrected for height above the ground by increasing the radius, R
by the height ∆R.

We now want to work out a shower direction in this coordinate system
represented in the form of a vector d of unit length along the arrival direction
of the shower.

Let us assume that the shower is first detected at station A, at time t=0,
and subsequently at station B at time tB and station C at time tC . (That
is, positive values of tB or tC are associated with time delays at detectors
B and C. Negative values of tB or tC mean that the shower is seen first
at detector B or detector C. See Figure 1 for the geometry, Note that the
shower in this diagram is moving bottom left to top right along the line of
the grey arrow.

From now on, in fact, we are going to assume that distances are measured
in light-seconds. This simplifies the subsequent algebra and normalises the
computer calculations by removing a velocity of light term. It also increase
the robustness of the numerical manipulations because for most situations
of interest the time delays tB and tC will be comparable in magnitude to
the inter-detector distances, when they are measured in light seconds. This
makes it possible to avoid small differences between large values, or ratios of
quantities of very different magnitudes, both of which can produce numerical
inaccuracies through rounding errors.

In order for us to have a valid calculation we have to assume that the
cosmic ray shower front moves at essentially the speed of light, which we
will denote here by the conventional symbol used by physicists, c. Given the
accuracy with which time differences can be measured this will be sufficiently
good. The shower then moves as a narrow front - almost like a circular plate
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Figure 1: Cosmic Ray Shower Geometry

touching first A, then B then C. So, the distance AB’ in the diagram will
be c.tB and AC’ will be c.tC . How do we express these distances in terms
of the angle at which the shower is moving?

2 Equation of Motion of a CR Shower Front

The general equation of a family of parallel 2D planes can be expressed as:

P.x+Q.y +R.z = s (4)

where the values of P,Q and R stay the same and the value of s changes to
distinguish the planes. Note that there is a certain amount of ambiguity in
these values: we could divide through the equation by a constant and still
get effectively the same set of planes.

In fact, since x, y and z are measured in light seconds, we can immedi-
ately choose to require that P 2 +Q2 +R2 = 1, that is we have define a unit
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vector whose individual components can only vary between the limits -1 and
+1, while its total length remains constant It is obvious that s must then
be just the time delay from the origin or x, y and z (i.e detector A). (To
see this, note that Q = R = 0 =⇒ P = 1, x = s i.e. the time delay for a
signal travelling from detector A along the x axis to the detector a distance
x light-seconds along. Similar conclusions hold for the y and z axes.)

We must also remember that the direction of this unit vector is along the
direction of movement of the shower (that it, it points from a location in the
sky, not to a location in the sky). This point is important when converting
from hour angles (ha) and declinations (δ) to P,Q,R denoted directions. We
also need to remember that hour-angle is measured as positive westward,
whereas our right-handed coordinate system has the Y direction pointing
East. Hence, the relationship between a point of the sky which is the origin
of a shower and P,Q and R must be:

P = −cos(δ).cos(ha) (5)

Q = −cos(δ).sin(ha) (6)

R = −sin(δ). (7)

The inverse relationship is:

ha = atan(Q/P ) (8)

δ = asin(−R) (9)

Note that since declination varies from −90o to +90o only there is no am-
biguity in the conversion from R to a declination. This is not necessarily
the case for the inverse tangent where there is an ambiguity of π. It is
necessary to take account of the individual signs of P and Q to obtain the
right hour-angle value. (However, when programming the solution, use of
the atan2(Q,P) library routine usually takes account of the signs to get the
right soluiton.)

Hence, subsituting the positions of detector B and detector C into the
equation of the shower front we get:

tB = P.XB +Q.YB +R.ZB (10)

tC = P.XC +Q.YC +R.ZC (11)

with:
P 2 +Q2 +R2 = 1 (12)

Note that this is rather simpler reasoning that that used to derive equations
similar to 10 and 11 in the earlier document. Here, I am just assuming
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what is in truth a rather obvious linear relationship, which is an immediate
consequence of A level vector analysis principles (rather than deriving some
of those results in long-winded way).

We have three equations and three unknowns, so a solution is possible.
We can then solve for angles using:

R = sin(declination) (13)

Q/P = −tan(hour angle) (14)

The minus sign for the solution for hour-angle arises because hour-angles are
measured westwards, while our Y axis is defined positive eastwards. Note
the potential ambiguity in evaluation of the inverse tangent is resolved by
reference to the individual signs of P and Q. (In programmatic terms, we
use the atan2(Q,P) function.)

3 Solutions

We can eliminate Q from equations 10 and 11 to get:

P. (XBYC −XCYB) +R. (ZBYC − ZCYB) = (tBYC − tCYB) (15)

We can eliminate P from equations 10 and 11 to get:

Q. (YBXC −XBYC) +R. (ZBXC − ZCXB) = (tBXC − tCXB) (16)

Eliminating R would give:

P. (XBZC −XCZB) +Q. (YBZC − YCZB) = (tBZC − tCZB) (17)

Remember that these equations are not independent: any two of the three
represent the same information as equations 10 and 11. We do, however,
need the three equations because it is possible for the coefficient terms to
become zero for particular detector configurations. For example, if all the
detectors are in the X/Y plane with ZB = ZC = 0, then equation 17 becomes
0 = 0 and this is no further use. (However, as long as the three detectors are
not in a line the other two equations must then have non-zero coefficients.)

The possibility of any one of the equations disappearing for particular
configurations means that in general, for any particular set of data, we need
to choose between three possible ways of moving forwards.

There are more advanced methods in matrix algebra that could deal with
these issues without explicitly having to write down and choose between
three solution schemes. Here, however, I have chosen to make technique
explicit using elementary algebra.
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3.1 Scheme ‘R’

This scheme is valid whenever: (YBXC −XBYC) 6= 0. We can reformulate
equation 15

P. (XBYC −XCYB) +R. (ZBYC − ZCYB) = (tBYC − tCYB)

as:

P = −R. (ZBYC − ZCYB)

(XBYC −XCYB)
+

(tBYC − tCYB)

(XBYC −XCYB)
. (18)

For the sake of simplicity of substitution later on, I will define two coefficients
consisting entirely of known quantities:

UPR = − (ZBYC − ZCYB)

(XBYC −XCYB)
(19)

VPR = +
(tBYC − tCYB)

(XBYC −XCYB)
. (20)

or:
P = R.UPR + VPR (21)

Equation 16, which is:

Q. (YBXC −XBYC) +R. (ZBXC − ZCXB) = (tBXC − tCXB)

becomes:

Q = −R.(ZBXC − ZCXB)

(YBXC −XBYC)
+

(tBXC − tCXB)

(YBXC −XBYC)
. (22)

Again I define two coefficients consisting entirely of known quantities:

UQR = −(ZBXC − ZCXB)

(YBXC −XBYC)
(23)

VQR = +
(tBXC − tCXB)

(YBXC −XBYC)
. (24)

So
Q = R.UQR + VQR. (25)

Since both P = R.UQR + VPR and Q = P.UQR + VQR are well-defined
we substitute for P and Q into equation 12 (P 2 +Q2 +R2 = 1) and get:

(UPR.R+ VPR)2 + (UQR.R+ VQR)2 +R2 = 1 (26)
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Which expands to:

(U2
PR +U2

QR + 1)R2 + 2(UPR.VPR +UQR.VQR).R+V 2
PR +V 2

QR−1 = 0 (27)

The normal method of solving quadratics then gives

R =
−((UPR.VPR + UQR.VQR)

(U2
PR + U2

QR + 1)
±1

2

√√√√(UPR.VPR + UQR.VQR)2

(U2
PR + U2

QR + 1)2
+ 4

(1− V 2
PR − V 2

QR)

(U2
PR + U2

QR + 1)

(28)
We can then back-substitute for P and Q using equations 21 and 25.

Note that the discriminant (the expression inside the square root sign)
will be positive for all values of time delays that are consistent with the
same shower front progressing across the detectors at the speed of light. It
would become negative if, for example, the triggering detectors B and/or C
took place later than the longest possible light-transit time in the detector
geometry. A negative discriminant value is therefore always an indication
that we do not have a true coincidence detection.

3.1.1 Sanity Check

We can do a sanity check on this equation. Let us assume that all the
detectors are in the XY plane, Station B is on the X axis and Station C on
the Y axis (Station A is effectively the origin). This means that

ZA = ZB = ZC = 0 (29)

YB = 0 (30)

XC = 0 (31)

From the equations above we find that:

Q =
tC
YC

;P =
tB
XB

(32)

• tB = 0, tC = 0 =⇒ Q = 0, P = 0 =⇒ R = 1.

• tB = 0, tC 6= 0 =⇒ Q = tC/YC , P = 0.

• tC = 0, tB 6= 0 =⇒ P = tB/XB, Q = 0.

• tB = tC =⇒ P/Q = XB/YC , and if XB = YC then P = Q.

• tC = YC , tB = 0 =⇒ Q = 1, P = 0, R = 0.
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• tB = XB, tC = 0 =⇒ Q = 0, P = 1, R = 0.

All this looks sensible when interpreted as solutions.
We can also assume another special geometry, with ZC = ZB = 0. This

immediately implies that UPR = UQR = 0 so that the quadratic reduces to

R = ±
√

1− V 2
PR − V 2

QR (33)

If tB = tC = 0 (that is a shower approaching down the Z axis perpendicular
to the plane of the detectors) we get R = ±1. This is exactly as we would
expect, since it also necessarily implies P = Q = 0.

For tB = 0, tC 6= 0, XB, YC 6== 0, XC = YB = 0 we get:

Q = VQR =
tCXB

YC
, P = 0, R = ±

√
1−Q2 (34)

Again, this all makes complete sense.

3.2 Scheme ‘Q’

This scheme takes account of detectors entirely in the X-Z plane (i.e. YB =
YC = 0). It is valid whenever: (XBZC −XCZB) 6= 0. We will aim to end
up with a quadratic equation for Q so we need to find equations for P and
R in terms of Q.

We can rewrite equation 17:

P. (XBZC −XCZB) +Q. (YBZC − YCZB) = (tBZC − tCZB)

as:

P = −Q. (YBZC − YCZB)

(XBZC −XCZB)
+

(tBZC − tCZB)

(XBZC −XCZB)
. (35)

Again we can write:

UPQ = − (YBZC − YCZB)

(XBZC −XCZB)
(36)

VPQ = +
(tBZC − tCZB)

(XBZC −XCZB)
. (37)

So, we can now write:

P = Q.UPQ + VPQ (38)
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Similarly, from equation 16, which is:

Q. (YBXC −XBYC) +R. (ZBXC − ZCXB) = (tBXC − tCXB)

R. = −Q. (YBXC −XBYC)

(ZBXC − ZCXB)
+

(tBXC − tCXB)

(ZBXC − ZCXB)
(39)

Again we can write:

URQ = − (YBXC −XBYC)

(ZBXC − ZCXB)
(40)

VRQ = +
(tBXC − tCXB)

(ZBXC − ZCXB)
(41)

and
R = Q.URQ + VRQ (42)

Substituting for P and R into equation 12 we get

(UPQ.Q+ VPQ)2 + (URQ.Q+ VRQ)2 +Q2 = 1 (43)

Which expands to:

(U2
PQ +U2

RQ +1)Q2 +2(UPQ.VPQ +URQ.VRQ).Q+V 2
PQ +V 2

RQ−1 = 0 (44)

The normal method of solving quadratics then gives

Q =
−((UPQ.VPQ + URQ.VRQ)

(U2
PQ + U2

RQ + 1)
±1

2

√√√√(UPQ.VPQ + URQ.VRQ)2

(U2
PQ + U2

RQ + 1)2
+ 4

(1− V 2
PQ − V 2

RQ)

(U2
PQ + U2

RQ + 1)

(45)
We can then back-substitute for P and R using equations 38 and 42.

3.3 Scheme ‘P’

This scheme is valid whenever: (YBZC − YCZB) 6= 0 and takes account of
the possibility of detectors entirely in the YZ plane (i.e. XB = XC = 0).
We will aim to end up with a quadratic equation for P so we need to find
equations for Q in terms of P and R in terms of P.

Equation 17, which is:

P. (XBZC −XCZB) +Q. (YBZC − YCZB) = (tBZC − tCZB)
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can be rewritten as:

Q = −P.(XBZC −XCZB)

(YBZC − YCZB)
+

(tBZC − tCZB)

(YBZC − YCZB)
. (46)

Again we can write:

UQP = −(XBZC −XCZB)

(YBZC − YCZB)
(47)

VQP = +
(tBZC − tCZB)

(YBZC − YCZB)
. (48)

So, we can now write:

Q = P.UQP + VQP (49)

Similarly, from equation 15, which is:

P. (XBYC −XCYB) +R. (ZBYC − ZCYB) = (tBYC − tCYB)

we can immediately write:

R = −P.(XBYC −XCYB)

(ZBYC − ZCYB)
+

(tBYC − tCYB)

(ZBYC − ZCYB)
(50)

Again we can write:

URP = −(XBYC −XCYB)

(ZBYC − ZCYB)
(51)

VRP = +
(tBYC − tCYB)

(ZBYC − ZCYB)
(52)

and
R = P.URP + VRP (53)

Substituting for P and R into equation 12 we get

(URP .P + VQP )2 + (URP .P + VRP )2 + P 2 = 1 (54)

Which expands to:

(U2
RP +U2

RP +1)P 2 +2(URP .VRP +UQP .VQP ).P +V 2
RP +V 2

QP −1 = 0 (55)

The normal method of solving quadratics then gives

P =
−((UQP .VQP + URP .VRP )

(U2
QP + U2

RP + 1)
±1

2

√√√√(UQP .VQP + URP .VRP )2

(U2
QP + U2

RP + 1)2
+ 4

(1− V 2
QP − V 2

RP )

(U2
QP + U2

RP + 1)

(56)
We can then back-substitute for Q and R using equations 49 and 53.
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3.4 Choice of Solution Scheme

This is a relatively easy choice. The conditions for valid solutions for each
scheme are:

Scheme ‘R’ : (YBXC −XBYC) 6= 0

Scheme ‘Q’ : (XBZC −XCZB) 6= 0

Scheme ‘P’ : (YBZC − YCZB) 6= 0

These are terms that appear in fraction denominators. Hence we simply
choose the scheme where the conditional term has the largest absolute value.

In practice, for real HiSPARC detector clusters, situated at mid-latitudes,
more or less in the local horizontal plane (that is vertical coordinates small
compared with horizontal inter-station distances) it is likely that all of the
solution schemes would produce valid results.

It is nevertheless worth ensuring that the solution methodology can cope
with all possible configurations because it is useful in testing to present test
date that has solutions which can be straightforwardly checked manually.
These are most likely to be configuration where one or more of the optional
solution schemes tend to break down.
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