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Introduction

We need to establish a distance between two points on the Earth that will act
as a baseline for a parallax measurement. We are trying to determine the small
acute angle subtended at the Moon by the two measuring locations. Ideally, we
would like the two measurement points to make an isosceles triangle with the
centre of the Moon to make the maths simple. Unfortunately, this would only
be true for special pairs of points on the Earth’s surface. In general, one of the
points will be closer to the Moon than the other, and the triangle formed by
the Moon and the two measurement points will have an irregular shape.

It is therefore clearly not enough just to calculate the absolute distance
between the two ends of the baseline. What we need to do is to think of the
line joining the Earth and Moon, and then imagine a plane perpendicular to
this line, passing through the centre of the Earth. We now have to extend
the lines from the Moon to our observation points forwards until they intersect
our imagined plane, giving two “projected” points. It is the distance between
these projected points that will determined our parallax baseline, allowing us to
calculate the distance from the centre of the Earth to the centre of the Moon.

This is not a trivial calculation, but it is far from impossible. The easiest
way to do this is in fact to do a bit more work than we strictly need to do,
going to an x,y,z coordinate system and then thinking of the problem in terms
of rotating the coordinate system to make the problem look easy - putting
one axis along the line from the Earth to the Moon. This trick of shifting a
coordinate system to make a problem look easy turns up frequently whenever
computers are appled to science/engineering problems, so all the methods based
on matrix algebra have been fully worked out and codified - first year university
stuff for maths and physics undergraduates. We are less likely to stray from the
path if we stick to well-used calculation routes, even if it is slightly further to
get round to where we want to be.



Calculation

Part 1: Converting Lattitude and Longitude to X,Y,Z Co-
ordinates

Trigonometry in 3D is tough on the brain. It will help if we first convert all the
locations with which we are dealing into a cartesian (x,y,z) coordinate system
because we can then use Pythagoras. So, we will assume we are dealing in
fractional degrees (e.g. as obtained from Google Earth or one of the other on-line
map systems!), with lattitude denoted by the variablef conventionally positive
from the equator north, and ¢ measuring longitude positive going eastwards
from the Greenwich meridian (the part of the great circle at 0 longitude running
from pole to pole through the equator). We will make our x,y plane coincide
with the equator and the x,z plane run through the poles and the Greenwich
meridian (and the International Date Line). I will distinguish all the coordinates
associated with SHS by a subscript “n” (for North) and those for the South
African school with “s” (for South). Hence, if Rg is the radius of the Earth:

@n = Rpcos (0) cos (¢n)
Yn = Rpcos(0n)sin(pn)
2 = Rpsin(0,)

@, = Rpcos (05) cos (¢,)
Ys = Rpcos(0s)sin(os)

zs = Rpsin(fs)

Clearly, then, the absolute distance between these two points is just an
application of Pythagoras:

D= \/(xn - IS)Q + (yn - ys)2 + (Zn - 25)2

However, though this is interesting to know, it is not what we need, because
in general the direct line between the two schools is not likely to be perpendicular
to the line between the centre of the Earth and the centre of the Moon. The real
parallax baseline with be foreshortened by a certain amount that will depend on
a complicated way on the geometry of the Earth, the two schools and the Moon.
(The two schools are not equally distances above and below the equator, and
the Moon itself normally sits either above or below the plane of the equator.
It will also be a bit to the east or west of the observing stations a the time
the photographs are taken.) This is all quite difficult to visualise, and it is also
extremely tricky to produce a clear illustration, because it really needs to be in
stereoscopic 3D.

I The coordinates of Stroud High School are lat=51.747, long—-2.230 to sufficient accuracy.



Part 2: Projection to Get the Parallax Baseline

What we need to do here is to rotate our original x,y,z coordinate system to
a new x’,y’,z’ system, where the x-axis lies along the line between the Earth
and the Moon. We can choose to keep our y’ axis in the plane of the equator,
for simplicity, since all we require is the y’ and z’ are perpendicular to the
Earth/Moon vector.

So, where is the Earth/Moon vector, in our original x,y,z coordinate system?
For this we will need some help from Stellarium. We use the Stellarium Location
window (move the mouse down to the lower left of the Stellarium window, then
up to the top of the toolbox that appears). Use the pop-up window to the
set the sky view to be that on the equator and the Greewich meridian (0.0°
lattitude , 0.0° longitude). Also use the Date/Time window to set the time
at which the observation are to be (or have been) made. Now find the Moon,
and click on it. You will then see a data table at the top right of the screen,
in which one line will begin with “Az/Alt"?. This stands for Azimuth and
Altitude, and the two numbers show the position of the Moon in the sky as seen
from this point. Azimuth is measured going round from North at 0°, East at
90°,South at 180° and West at 270°. Altitude is the height in the sky above the
horizon, again in degrees. Given that we picked a special point on the equator,
you should be able to see that the azimuth is just the longitude at which the
Earth/Moon vector would pass through the Earth’s surface. Call this point
“m”. We will call the azimuith/longitude ¢,,. The altitude, 6,,, is also related
to the latitude of the same point - but careful here! If the azimuth is between 0°
and 180°then lattude = altitude, but if azimuth is between 180°and 360°then
lattitude = —altitude.

What we need to do now is to rotate our original coordinate system so that
the x-axis lies on the equator along the line of longitude that runs through point
m. Obviously this angle of rotation is just the value of the longitude of point
m. We then rotate around the y-axis (which stays on the equator) bringing the
x-axis up so that it lies through point m. This rotation around the new y axis
is clearly just the lattitude of point m. At this point the new z-axis is leaning
back from its original orientation along the Earth’s rotation axis. Once we have
done all this and read off the new x’,y’,z’ coordinates of the two schools, we just
ignore the x’ coordinates and use Pythagoras on the new y’,z’ coordinates to
get the projected baseline for a parallax measurement.

There is no use denying that coordinate rotation is a bit tricky, but it is a
very standard mathematical procedure for anyone studying maths or theoretical
physics at university. We could look up the answer we need, but it is fairly easy
to see what it must be in our somewhat simplified problem (remember we keep
y’ in the original x,y plane).

The new coordinates will always be expressible in terms of the old coordin-
ates by a 3x3 matrix equation (where we have to work out the r;;):

2Tf you do not see Az/Alt, then you need to go into the Configuration options, where you
will find a checkbox that requests that this particular data should be displayed in the table.



/

X 11 Ti2 T3 X
/

Yy = | T21 T22 723 Y
/

z 31 732 T33 z

However, the easiest way to get to this is to think about a rotation in 2D
first. It is fairly easy to show by elementary trig that a rotation by in the x,y

plane,¢,,, can be represented by:
=1Pmy ke

x cos(¢dm)  sin(pm) 0 x
yl = _Sin(¢m) COS(d)m) 0 Y
| 2] i 0 0 1 2
Similarly, a rotation by 6,,, around a y-axis (in the x,z plane must by analogy
be: _ _ -~ o
! cos(0m) 0 sin(f,,) x
y | = 0 1 0 Yy
2! | sin(0n) 0 cos(0m) z

Applying first theg,, and then 6,, rotation is then just:

x’ cos(0) 0 sin(fy,) cos(dm)  sin(py) 0 x
y | = 0 1 0 —sin(pm) cos(¢pm) 0 y
| 2] | sin(0m) 0 cos(0m) | | 0 0 1 z
which multiplies out to:
[ 2] [ cos(pm)cos(0)  sin(ém)cos(Om)  sin(6m) x
y | = —sin(¢m) cos(¢m) 0 y
2! | —cos(dm)sin(0m) —sin(Pm)sin(0m) cos(0n) z

One can check that this has all the right properties by trying out “special”
values of ¢,, and 6,,, such as 0 and 7/2, combinations of which should rotate
different axes over each other, turning, say, a point such as (1,0,0) to (0,1,0)
etc., and the matrix therefore should resolve down to various patterns of Os and
1s. We will, however, leave this after coding the spreadsheet, when it will be

part of the testing.

Summary

In summary, therefore:

e We have worked out (probably with Excel) the 3D coordinates (x,,, Yn, 2r)

and (zs,ys, 2s) from geographical lat. and long. for the two observing
stations.

We apply the 3D rotation matrix derived above (e.g. using Excel) to each
of these vectors to get (x),,v.,, z;,) and (z),y., z.) which puts the new x’

axis along the Moon /Earth vector, and the new y’,z’ plane is perpendicular
to this line.

Now ignore z/ and z’for the moment, and derive the parallax baseline as
V(2 — 2L)% + (y}, — y.)? which is a line perpendicular to the Earth/Moon
vector.




e Use the measured angular displacement of the Moon to get its distance
from the baseline and elementary trig.

e Add the average (z], + 2%)/2, to the distance estimated above to get the
Moon/Earth, centre-to-centre distance, which is the value quoted in stand-
ard references.

In fact, this is still not a completely perfect formula, because there are some
second-order trigonometry corrections due to not having a perfect isoceles tri-
angle between the two observing stations and the Moon (strincty, we ought to
work out all the individual angles in the triangle). However, given that we have
a very long thin triangle with two angles with the baseline quite close to 90°,
these corrections will be much smaller than the experimental errors, and can
safely be ignored.

Testing the Spreadsheet

The above formula have been encoded into an Excel spreadsheet. As with all
software it should be tested before being used. If the people who intend to use
the software do some of the testing, they can be sure they really understand
what the program is supposed to be doing. I have worked as an expert in this
area for 40 years and I always recommend it as a result of long experience of
programs that have errors in them, or programs that may be correct but are
doing something a bit different to what I had assumed they are doing. I know
I make lots of mistakes, so check, check, check!

One way of doing this is to enter data that are particularly easy to interpret
and hand-calculate as a check. So, for example, we might set the Earth’s radius
to 6000km as an approximation (and an easy number to handle) - but remember
to reset it back to 6371km before the real calculation. Then we set the locations
of the base stations to locations such as North and South poles, then one the
equator at 0, 90, 180, 270 degrees longitude and so on. Similarly, we set the
Moon Alt/Azimuth to (0,0), (90,0), (0,90) and so on, to set up simple geometries.
All of these produce simple geometries that are easier to visualise (but not that
easy!).



