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1 Background and Motivation

We know that a single high-energy cosmic ray particle, often a proton, can
initiate a cascade of particle collisions in the atmosphere, leading to an
Extended Air Shower (or ‘EAS’).

An EAS cascade cannot occur in the absence of the atmosphere, but the
particles generated in the cascade are also absorbed by the atmosphere. If
we could place a series of cosmic ray detectors at different altitudes along
the path of an EAS, at very high altitudes we would expect to see very few
particles (but individually they would be of very high energy) and as we
come down through the atmosphere the number of particles would increase,
but the individual energies would decrease as energy is shared out. In the
lower layers of the atmosphere, however, the individual particle energies
drop below the threshold level required to create new particles. From that
point onwards, more and more of the remaining particles are absorbed by
collisions with air molecules.

Ground based cosmic ray detectors, such as those in the HiSPAC net-
work, are in the lower part of the atmosphere where new particles are not
being created and many are being absorbed. The less energetic EAS events
may not trigger the detectors at all, because too many particles have already
been blocked by the atmosphere.

We might suspect that the development of a cosmic ray shower depends
principally on the amount of matter encountered during the passage of the
shower through the atmosphere. We might therefore expect that on days
when the atmospheric pressure is higher (that is, there is a greater mass
of air between us and space) we would see a lower rate of EASs at ground
level (more showers have been completely absorbed). In contrast, low at-
mospheric pressure means that the peak of cascades occurs lower in the
atmosphere, giving a greater intensity of cosmic rays at ground level. We
might also expect that tracks that pass through more air (e.g. those at a
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larger angle to the vertical) undergo a more development, and ultimately
more absorption.

We also need to worry about the effects of the environment on the effi-
ciency of the detectors. Perhaps, for example, the light-intensifier tubes are
sensitive to temperatures and produce bigger signals at lower temperatures.
(Their specification suggests that this may be so.) In this situation it would,
of course, be temperature inside the detector ‘top-box’, that matters rather
than the air temperature outside the box. When the box is exposed to direct
sunlight the inside temperature may well be considerably higher than the
outside temperature. It is therefore entirely plausible that we might register
differing rates EAS events depending on the temperature (even though the
real event rate is not changing).

The cosmic ray event rate may, perhaps, also be correlated with other
factors, such as, for example, the intensity of the solar wind. The solar wind
is a stream of hot ionised gas blowing outwards from the Sun. Being ionised
it is conducting, and being conducting it will carry currents and a magnetic
field, and magnetic fields can deflect the path of charged particles.

The magnetic fields can be strong enough to deflect the lower-energy
cosmic ray particles coming from outside the Solar System and stop them
arriving at the Earth. So, when the wind is strong we might expect to get
more protection and see a lower rate of EAS events. The solar wind tends
to be strongest when there are lots of sunspot on the solar surface, and
such sunspots are also the source of the magnetic fields that get trapped in
the streaming gas. On the other hand, giant solar flares, which are often
associated with sunspots may themselves generate lower energy cosmic rays
and these will stream towards the Earth, sometimes adding to the cosmic
ray flux.

It is by no means certain that we would be able to easily see such effects
with the HiSPARC detectors. They are most sensitive to cosmic rays which
arrive at the upper atmosphere with energies of about 1015eV and these are
not greatly affected by the Solar Wind.

All of these and other hypothetical sources of variation in the cosmic
ray intensity would, however, be masked by the relatively strong effects of
variations in atmospheric pressure. In order to look for such correlations it
would help if we could remove the effects of pressure to obtain a ‘pressure-
corrected’ EAS event rate in which remaining variations ought to be more
apparent.

The approach used by professional scientists in situations such as this
is to first identify the strongest effect on the observed data. They then
use any observed correlation to remove this from the observations. So, for
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example, the event rate on high-pressure days would be adjusted upwards
and conversely would be adjusted downwards on low-pressure days, such
that we would no longer be able to detect any pressure correlations in the
adjusted data. We then look for the next strongest source of variation,
perhaps temperature, and remove this, and so on. This is known as Analysis
of Variance’ (usually abbreviated to ANOVA). The process of deriving the
influence of a particular source of variation usually involves a statistical
process called Regression. We will talk about this below.

The advantage of this approach is that we know when we have reached
the end, and can be certain that there are no remaining significant correlated
effects on the data. We can be certain of this because when the data is
fundamentally random (which we believe to be the case with cosmic ray
arrival rate) there will always be a inherent level of variation in the arrival
rate. If the long term average arrival rate were, say, 2500 events per hour,
the actual counts in any particular hour is very unlikely to be exactly 2500,
it will always be a little above or below this figure. In fact, we can do
the mathematics and predict exactly how likely it is that we might see
any particular arrival count in any particular hour: it is called the Poisson
Distribution, named after a great French mathematician. Hence, once we see
that the distribution of arrival rates, after correction for known correlations,
looks like the Poisson Distribution corresponding to the long term average
rate we can be sure that there are no other significant hidden correlations.
(There may, of course, still be some weak correlations, too insignificant to
show up.)

I like to look at things from this viewpoint: the first stage in any physics
experiment is understanding and calibrating the instruments that you intend
to use. We need to know that we can trust what they tell us. In the
case of high energy cosmic ray detection, the ground-based detectors are
in effect only part of the complete detector: we do, indeed, rely on the
interaction with the atmosphere to create the EAS which spreads the energy
of the initiating particle over a wide area and increases the probability of
interactive with a fixed detector (We would have a much lower chance of
having our detector in the right place to register a single proton). We
must therefore calibrate the behaviour of the atmospheric component of our
detector.
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2 Project Learning Outcomes

• Insight into why using very large amounts of data allows us to tackle
different types of scientific problem

• The use of statistical methods, particularly Regression and Analysis
of Variance.

• Introduction to some of the programming techniques required for han-
dling large amounts of data.

• Practice in methods of presenting information extracted from large
datasets.

3 The Project

We can just plot the rate of cosmic ray events and against pressure and we
would certainly find a correlation. This is not, however, getting to heart of
the physical processes.

We have no particular reason at present to believe that in space outside
the Earth’s atmosphere that there is any preferred direction from which
cosmic rays arrive1. Here on Earth, in the absence of the atmosphere, if we
plotted the arrival directions on the sky over some period we would expect
to see a fairly uniform scatter.

Once we start considering the effect of the atmosphere, however, we
must take account of the different lengths of the cosmic ray shower tracks
through the atmosphere. Those that arrive from directly overhead pass
through the smallest amount of atmosphere, while those coming from nearer
the horizon have longer tracks within the atmosphere and so interact with a
larger number of air molecules. Our crude plot of EAS rate against pressure
is therefore merging together the data from tracks that see very different
amounts of air before they reach our detectors. To get at the fundamental
physical processes it would be better if we could correlate the rate of arrival
of cosmic rays against the amount of air encountered along each track.

We can do this because there is some HiSPARC data available showing
the directions from which showers arrive. We can, in principle, use the angle

1 A great deal of effort has gone into trying to detect preferred directions looking for a
clues to the origin of cosmic rays. It is possible that at the very highest energies there may
be some correlation with the direction of super-massive black holes in other galaxies—so-
called ‘active galactic nuclei’ or AGNs. In the range of energies accessible to the HiSPARC
network any correlations are likely to be undetectable.
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or arrival of a shower and the current barometric pressure to assign an air
mass to each track. That is the essence of this project.

We usually describe the direction of an EAS arrival in terms of the
zenith angle θ, which is the angle with the line going from the detector
straight upwards to the point on the sky known as the zenith, and an azimuth
angle, φ which measures the projection of the track down onto the ground—
effectively a compass bearing.

For this project, however, we only need to pay attention to the zenith
angle, so we can ignore the azimuth angle2.

There are, in principle, two ways to get EAS arrival directions, but
I suggest that for the present purposes we confine ourselves to direction
information registered by those HiSPARC stations that contain four detector
plates. (mostly those at universities in the Netherlands, such as the Nikhef
group). For these we know that the accuracy of the direction information
has been calibrated against data from professional cosmic ray observatories.
We can rely on it without further consideration3.

Showers arriving from high zenith angles clearly pass through more air
mass. For example, those coming from, say 45o to the zenith have passed
through

√
2 times as much air, compared to those coming straight down

(zenith angle of zero). (That is, we have to divide by cos(θ) = cos(π/4) =
1√
2
)4 Alternatively, we would have to raise the air pressure by

√
2 to get

the same amount of air between us and space directly overhead. A shower
arriving at 60o to the zenith passes through twice as much air mass. (That
is, we have to divide by cos(θ) = cos(π/3) = 1

2).
This suggests that rather than plotting total EAS event rate against

pressure, we should sort into zenith angle groups and plot the density of
tracks on the sky against an estimate of the air mass per unit area along the
track which we obtain by dividing the barometric pressure by the cosine of
the zenith angle.

2 The azimuth angle may be conventionally measured from either the direction of North
or the direction of South, and in general you need to know which of these conventions are
in use. HiSPARC uses the North convention, but most other astronomers use South. The
convention is, however, not relevant for the current work.

3 From work we did a few years ago at Marling, I have some doubts about the accuracy
of the other method, which compares EAS arrival times at multiple stations. I think that
there may be systematic errors in this method which we were unable to quantify.

4 Note that I have started describing angles in terms of Radians (in which the angle all
the way round a circle is 2π radians) rather than degrees. You need to get use to this for
programming with trigonometry because all the mathematical functions of programming
languages need you to supply angles as radians. Convert from degrees to radians by
multiplying by π/180.
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The air mass per unit area traversed will be our independent variable.
Our dependent variable should be the density of shower tracks at a particular
zenith angle. That is, the number of showers per hour per unit of solid
angle5. Imagine plotting all the showers on a sphere. It is the density per
unit area on this sphere. We therefore have another correction to make
before we do our plots because there is a lot more sky at larger zenith angles
than there is at smaller angles. Think of the amount of sky just above the
horizon, all the way round, compared to the tiny area just around the zenith.

I am just going to quote a formula here, because the proper derivation
of the correction requires A-level calculus. (See the Appendix.) For tracks
with zenith angles between θ1 and θ2 in order to get the number of tracks
per steradian (which is the unit for solid angles—areas on the sky) we divide
the EAS rate count by a factor, f :

f = π(sin2(θ2)− sin2(θ1)) (1)

This clearly has the right sort of form, because it goes to zero at the zenith
(where there is an infinitesimal amount of sky) and also goes to zero at the
horizon (where there is zero projected detector plate area) and is a maximum
half-way between.

3.0.1 Calculation Work

In order to work out how we get to the data that we can plot for our
correlation it is a good idea to start from the end.

In order to plot our final graph we need to have a table with two essential
columns (those which are starred), but it is probably a good idea to include
the other columns for checking that our results make sense.

mass/unit area along track* This we calculate by taking the barometric
pressure and dividing by the cosine of the zenith angle. This is our
independent variable in graph plotting and curve fitting.

counts/steradian* The count rate at a particular zenith angle logged over
some period of time. This is the actual counts we record in the zenith
angle interval divided by the factor given by equation 1. This will be
the dependent variable in graph plotting and curve fitting.

5 The unit of solid angle is the steradian. There are 4π steradians all around a sphere
(or 2π in a hemisphere). You therefore get a measure in steradians if you divide an area
on a sphere of unit radius by 4π.
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time period logged Assuming that we are logging over, say, hourly inter-
vals this might be the start of the logging period.

zenith angle The zenith angle which we may take to be the lower boundary
of a zenith angle range (e.g. we write 60o for the interval from 60o to
70o).

That is where we need to end up. Note that we might choose to write this
data to a disk file, perhaps in tab separated columns, but before we do that
we would be holding this information in several internal data arrays in our
analysis program and we might choose to plot directly from there (e.g. using
the matplotlib library in Python) with going through a file.

Our main calculation challenge is that the raw data from the HiS-
PARC data base will consist of two tables organised in quite different ways.
(You can download this data using the form on the HiSPARC website at
https://data.hisparc.nl/data/download/. I suggest that you select the sta-
tion Nikhef 501 and download a small amount of data—say one or two
hours—to start with. It is easy to test programs using a small amount of
data, and when we are sure it is working we then move on to working with
several months worth of data.)

The first table records EAS events and it has the following columns, in
this order:

date time of event [GPS calendar date];

time time of event [GPS time of day];

timestamp time of event [UNIX timestamp];

nanoseconds time of event [number of nanoseconds after timestamp];

pulse heights (4x) maximum signal pulse height [ADC]—four columns of
these;

integral (4x) integral of the signal [ADC.sample]—four columns of these;

number of mips (4x) estimate for the number of particles in the detector—
four columns of these;

arrival times (4x) relative time of arrival of the first particle in the de-
tector [ns]—four columns of these;

trigger time relative time of the trigger timestamp [ns]
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zenith reconstructed shower axis zenith angle [deg]. N.B. if it was not
possible to calculate angle data for the event (most of them!) then
this value will be set to -999. Reconstruction of the arrival track only
occurs if the shower triggers all four detector plates.

azimuth reconstructed shower axis azimuth angle [deg]

We are really only interested for this project in the time columns and
the zenith column. (We will find that the timestamp column is the most
useful measure of time since it just counts seconds and we do not have to
worry about how-many-days-in-a-month and so on.)

If you want to know what the rest mean, look up the documentation on
the HiSPARC website.

Note that there is one line (or ‘record’) for every EAS event logged.
Since these occur at random times if we want to know the rate at which
events occur (say, per hour) we will have to count the number of events in
a period of 3600 seconds. We will be interested only in events that have a
valid zenith angle calculation (i.e. its value will NOT be set to -999). Data
for all other events should be ignored.

The weather data table has these columns:

date time of event [GPS calendar date]

time time of event [GPS time of day]

timestamp time of event [UNIX timestamp]

temperature inside temperature inside [deg C]

temperature outside temperature outside [deg C]

humidity inside relative humidity of the air inside [%]

humidity outside relative humidity of the air [%]

atmospheric pressure barometer data [hPa]

wind direction wind direction [deg]

wind speed wind speed [m/s]

solar radiation intensity of solar radiation [W/m/m]

uv index measurement for UV intensity [0-16]
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evapotranspiration amount of evaporated and transpirated water [mm]

rain rate amount of rainfall [mm/h]

heat index perceived temperature taking humidity into account [deg C]

dew point water vapor below this temperature will start to condensate
[deg C]

wind chill perceived temperature taking wind into account [deg C]

Once again, we only need to pay attention to part of this data, the time, the
temperature (outside) and the atmospheric pressure. Note that, unlike the
event data, the weather data is logged at regular intervals, typically every
five seconds.

The calculations we need to do therefore run something like this:

1. Read the weather data from its file, line by line.

(a) Divide the data into hourly intervals (or half-hourly if you wish).

(b) Calculate the average atmospheric pressure and temperature over
that hour.

(c) Build three internal data arrays (e.g. appending data to the ar-
rays hour by hour):

i. The timestamp at the start of the following hour.

ii. The average pressure during the following hour.

iii. The average temperature during the following hour.

2. Read the event data from the file line by line, until we reach the end
of the file:

(a) Check record for valid zenith angle data. IF invalid read the next
record from the event data file.

(b) For a record with valid zenith angle, extract the timestamp value
(3rd column) and the zenith angle (column 22?) and append
these to an internal pair of arrays one holding times the other
zenith angles.

In each hour we now need to count up the cosmic ray event that occur
in each zenith angle band, ending up with a table something like the rough
example in Table 1.
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Table 1: Example Table for hourly counts against zenith angle for each hour
Hour Press 0→ 10o 0→ 10o 10→ 20o 20→ 30o 30→ . . .

1 1005 30 35 27 etc. etc. . . .
2 998 32 28 46 etc . etc. . . .
3 988 etc etc etc etc . etc. . . .

You continue doing this and adding line to the table, until you have
worked through every hour for which data has been logged.

There are several ways you can program this counting process. I might,
for example, set up an iteration loop on the weather data, working out the
start and end of the hourly periods in terms of the timestamp values (add
3600 to go from start to end). We then start at the beginning of the event
data table and assign the counts to the appropriate zenith angle box in the
first row, until the timestamp on an event becomes larger than the hour-end
time.

You will, of course, need to set up arrays to hold the tabular data that
you are going the generate. Python then has the very convenient append()
operation to add a new item onto the end of an array. (There are faster
ways to do this, but keep it simple to start with.)

This is still not the table that relates EAS event rate to air mass along
the arrival track.

1. We now iterate through lines in Table 1

(a) For each line we then iterate through the zenith angles for each
angle creating a new record in our final output table containing:

i. An airmass/unit area calculated by dividing the pressure by
the cosine of the zenith angle.

ii. The EAS event rate/steradian by dividing the event rate in
Table 1 by the scaling factor from equation 1
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4 Some Technical Background

4.1 Understanding Data Mining

‘Big Data’ is one of the buzz-words of the moment—and it really is more
than just hype.

In truth, the modern terms Data Mining, Data Analytics or Data Science
are to a large extent just convenient labels applied to a collection of tech-
niques we have used on smaller scales for many years. More organisations
now required these skills to be applied on larger scales and applied together
in systematic ways, and the demand from industry means that many uni-
versities now offer masters courses that teach these techniques to prepare
students for a thriving job market.

Modern computing technology allows us to collect and store information
at rates and volumes that were never before possible. Many areas of science
are now exploiting this capability—and having to learn how to deal with
data mountains. It opens the prospects of new types of experiment, with
the chance of observing previously hidden processes, but also demands that
scientists learn new techniques.

Commercial organisations have similar issues: every time you buy from
Amazon, it helps them to build a profile of the type of things people like you
tend to buy, and often specifically what you as an individual are likely to
buy, so they can persuade you to buy more. Many companies now explicitly
advertise for ‘Data Scientists’ to help handle their data mountains.

For example:

• Experiments on the Large Hadron Collider (which have been described
as ‘looking for very small needles in very large haystacks’) have to
handle data coming out of its detectors at a rate equivalent to the
entire information flow on the Internet.

• Automated genome decoding is now undertaken by rooms full of robotic
DNA sequencers, followed by sophisticated statistical analysis on su-
percomputers to put together a complete genome sequence.

• The recent image of a black hole from the Event Horizon Telescope
involved processing hundreds of terabytes of data collected over just a
couple of days.

• Sometime in the next couple of years, the new Large Synoptic Survey
Telescope, will be completed and by 2022 its automated observation
programme—scanning the entire sky visible from its site every few
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days—will be matching or exceeding the LHC data rates. (The ro-
mance of astronomers going to remote mountain peaks to spend cold
nights sitting at the end of a telescope—which still happened when I
was a student—now belongs to times past: we now control telescopes
robotically to do the actual observations and human astronomers sit
at computer monitors half a world away.)

• A few years from now the Square Kilometre Array—a new radio tele-
scope of extraordinary sensitivity—will start producing data at rates
that exceed by an order of magnitude everything we have just talked
about.

In all of these fields—and more—much of the research is about write pro-
grams that manipulate data stored in a computer, mining (and filtering)
to extract useful information. In effect, the experiments are ‘virtual’ rather
than involving real equipment in laboratories.

Scientists and mathematicians who understand how to process and fil-
ter large amounts of data are now in high demand not just in the fields
highlighted above, but also in commercial organisations whose competitive
position depends on the effective deployment of the large quantity of infor-
mation flowing into company computers every day. Before I retired, I used
to monitor the behaviour of nuclear reactors using data collected minute
by minute, and sometimes we needed to think about what might happen
to the reactors years into the future (for example, if we were considering
changing the amount of uranium in the fuel). These studies, using large and
complicated software that simulated the reactor physics, generated tens to
hundreds of gigabytes of data which had to be filtered to reveal the answers
for which we were looking.

Hence, specialists in High Energy Physics and Astronomy are now some-
times poached away to high-paying commercial jobs, such as in City financial
institutions.

The HiSPARC experiment is a small example of ‘Big Data’. There is, in
fact, relatively little to be learned from just one Extended Air Shower event,
but a great deal may be possible by observing patterns that emerge over long
periods of time from many HiSPARC stations. While it is, indeed, possible
to detect some interesting effects by downloading small amounts of infor-
mation from the HiSPARC database (say 7-14 days worth) and analysing
these using, say, a spread sheet, the essentially random nature of cosmic
ray events means that precision measurements require handling information
collected over months and years.
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A HISPARC station detects, on average, between 1500 and 3000 EAS
events per hour6—up to, say, 60,000 per day, or getting on for 20,000,000
per year. That is both exciting and daunting: that volume of material
means that statistical analysis could be very successful at measuring small
effects, but we also need to learn how to efficiently process tables with 20
million entries. (And remember, the HiSPARC database is small compared
to examples such as the LHC.)

Nevertheless, we will need to learn some of the techniques that are now
required to make progress in fields such as High Energy Physics and Astron-
omy. In particular, we need to be able to:

• Learn how to access data stored in remote databases across the Inter-
net.

• Learn how to filter the data to select the information that is of interest
for our experiment.

• Learn how to organise the data so that we can apply relevant statistical
tests.

• Learn how to present the processed data for human understanding.

• Learn how to use computational methods that can deal with large data
volumes.

These data analytics skills are highly transferable, and are in wide de-
mand (and command high salaries) outside the scientific world, particularly
in finance.

4.2 Using Statistical Methods

Statistical methods are an essential tool in modern science, and important
for anyone who wishes to work with Big Data. We often need to work with
situations where, perhaps, there is an effect that might be worth knowing
about, but it is masked by random variations (so how do we extract the
underlying trend?), or we may see what appears to be a trend, but worry
about the possibility that it might be an illusion—the result of a random
clustering of data that just happens to look significant. (For example, bright

6 Stations that include four detector plates see more events than those with just two
plates—they just have twice as many chances to catch the edge of a shower. The Marling
detector has just two scintillator plates.
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stars are in truth randomly scattered across the sky, but from ancient times
people have grouped them into the patterns we call constellations.)

There are several important statistical methods that we may need to use
in order to analyse HiSPARC data. For the investigation of pressure (and
possibly other) effects, however, we will rely principally on two approaches:
Regression and Analysis Of Variance (also widely referred to as ANOVA).

Regression7 helps us to fit the ‘best’ line to a graph of scattered points,
and then tells us whether the line can be trusted to be a fair description of
an underlying effect. You have probably done experiments in school where
you have made measurements, plotted experimental points on a graph, then
drawn a line through the points ‘by eye’. Fortunately for you, most ex-
periments in school laboratories are designed such that the effect you are
investigating is very apparent, and there is a relatively small amount of
measurement error. Most cutting-edge scientific research work, however, is
done at the edge of measurability and measurement errors and random ef-
fects tend to be important. When we plot graphs, the points may be widely
scattered. We may also have a great many points to plot (perhaps thou-
sands). Nevertheless, we may still want to estimate the underlying correla-
tion between two measurements (say cosmic ray event rate and barometric
pressure)—but it may not be so obvious how to draw the best line through
a blobby mass of points. We need a method of picking a line that in some
precise mathematical sense is as close as possible to get to all the points on
the graph.

There are good (but somewhat sophisticated) mathematical reasons for
usually picking the line that minimises the sum of all the squared distances
from the points on the graph to the chosen line. This is often referred to a
‘least squares fitting’, or ‘least squares regression’. We often first try to fit
the best straight line to the data, but if we suspect that the data show a
more complicated pattern—say a quadratic—there are ways to find the best
fit quadratic, or cubic, and so on.

Now that most experimental data is collected by computers, you never
do least squares fitting manually, These days you never even need to write a
program that does the job, because it is now always possible to find very good
numerical library routines carefully constructed and tested by experts at
numerical analysis. You can call up such library routines in Excel, Python,
Java, Fortran, C, C++ and in fact just about any modern programming

7 The name Regression came to be associated with the technique in a particular his-
torical context. In now has no useful descriptive worth at all and it is not worth worrying
what it originally meant. Just accept the word as one of those odd scientific names.
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language. You only have to understand enough about regression to see how
to provide these library routines with the right information, and to be able
to interpret the results that are produced.

The library routine takes your arrays of X and Y values (better called the
independent and dependent variables) and spits out the A and B coefficients
of a straight line represented in the form Y = A.X + B, representing the
underlying correlation. It also returns a correlation coefficient, usually called
R, which tells you whether you have a good fit (or not). Decoding the full
meaning of R would take us into A-level statistics and beyond. Suffice to
say that R is a measure of the variation of the points away from the straight
line, such that R=1.0 is a perfect fit, and R=0.0 is no useful fit at all.

I will go through the process that I would typically follow when looking
at data of this type. I have picked up a few months worth of data from
one of the Amsterdam Science Park stations (501). We do, however, need
to repeat this process with more care using a much larger quantity of data,
say, at least a year and preferably more.

I would first typically just plot the data against time to see if any patterns
are obvious. So here is the event rate vs time. (See Figure 1 on page 16.)
Two things stand out: firstly the average event rate is somewhere in the
region of 2400/hr; secondly, there are big variations from day to day in the
rate, and we might have a strong suspicion that these could be related to
the weather.

So we might next plot the event rate against barometric pressure, and
as part of this process I would try to fit a straight line (using the linear
regression technique) to the scatter of points. Figure 2 shows a pretty strong
correlation, and the straight line looks fairly good—though there may be a
suggestion that the line should really have a slight curve, and we may want
to revisit this fit later. Is this the whole story?

This leads us onto a widely used and extremely important statistical
technique knows as Analysis of Variance (ANOVA), in which we try to
explain all the scatter around our correlation lines by trying various corre-
lations one by one until we get to a point where any remaining variations
can be attributed to pure randomness that cannot be further explained.

Let me introduce a rule-of-thumb. If we believe that the rate of arrival of
cosmic rays into the Solar System from the Galaxy is be completely random
(and as far as we know, there is indeed no reason to expect them in correlated
bursts) then in some hours we are likely to count more events than in other
hours. There is no explanation other than the randomness. Some advanced
mathematics (the Poisson Distribution—see below) now tells us that we can
describe the way counts vary from hour to hour. That is, if we count events
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Figure 1: Cosmic Ray Rate Vs Time

in each hour (or in any other selected time interval) and get an average rate
of, say, R, we can predict the chance of counting any particular number of
events in future hours. (That is, over a very long future time, we could
record for each hour all the counts and we would know what fraction of
hours we would expect to yield a particular count value bigger or smaller
than R.) As a rule-of-thumb, however, if we have an average event rate of R,
we are very likely to see the actual count rate varying around R by ±

√
R.

(About 60% of the observed hourly counts would probably be within this
range.)

Away from rules-of-thumb and back with proper statistically analysis,
having plotting my set of points and obtained a regression line, my next
step is a calculation of the residuals. That is to say, if my input data were
represented by pairs of values (xi, yi) where, perhaps, the x represented

16



Figure 2: Cosmic Ray Rate Vs Barometric Pressure

pressure and y the count obtained over an hour at that pressure, and I
obtained a fit y = A.x+B, my residuals, yRi , are calculated by subtracting
the expected value of y, given the correlation, from the observed value.

yRi = yi − (A.xi +B). (2)

This is the variation in the data not explained by the pressure correlation.
If what is left is pure randomness, when we plot the residuals against the

original X (say, pressure) we should now obtain points scattered randomly
around a horizontal line. If, it turns out, we ought to have been using a
quadratic fit—a more complex relationship with pressure—then the distri-
bution of points will not look straight. I am not going to include this graph
here. Check it yourself.

I am actually now going to plot the residuals against time, after taking
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account of the pressure correlations (see Figure 3 below). I can immediately
see that there are still some patterns in the data, with variations from day to
day and a trend over the whole period. Since this period covered later winter
and early spring 2019, I might suspect that the average daily temperature
was steadily rising and that we could also have a temperature effect on
cosmic ray rate.

Figure 3: Cosmic Ray Rate Residuals (after Pressure-fit) Vs Time

At this point, therefore, I do another regression of these residuals against
temperature. Indeed we do find that there is a correlation (not as strong
as the pressure correlation, but still looking significant. At this point we do
not know whether there is perhaps another correlation effect still to find.
Is there anyway of eliminating this possibility without trying a long list of
vague possibilities? (You need to be careful about trying lots of correlations
where there is no prior reason to suspect dependency: sooner or later you
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will find something in the data—and it may be just a random arrangement
of points that fools you into making a claim that turns out to be wrong.)
There is, however, a good way to see if there is information still buried in
the data, even if we do not know what it is.

We can plot a histogram of these residuals to see if they have the type of
distribution that we would expect from purely random arrival times. That
is, we count the number of residuals that occur at various deviations from
the known average count rate. Figure 4 shows what we have left after re-
moving the correlations with pressure and temperature. Well, the residuals
do indeed look as though they have a classic ‘normal’ distribution (the ‘bell-
shaped’ curve—it is called ‘normal’ because it turns up so often in statistics).
However, we need to consider whether the width of the distribution is con-
sistent with what we might expect if there is nothing is left to explain other
than the completely random arrival times of the cosmic rays.

If their arrival times are truly random, then it turns out that we can
derive the probability that any particular period of recording (say one hour)
will log a given number of events. We can, in fact, predict mathematically
the exact shape of the histogram we would get if we plotted the residuals
assuming that the cosmic ray arrival times were completely random. This
is A-level/university level maths, so I am just going to quote a formula.

The French mathematician Poisson studied this problem back in the
19th Century and published a famous formula for what is now known as the
Poisson Distribution:

P (k) =
λk

k!
e−λ (3)

where P(k) is the probability of getting k events in some time interval,
where is the average number of events we expect in that interval, and e
is the well-known Euler’s number, 2.71828.... This formula is often useful
when the average number of events in an interval is fairly low—say 10 or less.
Although the reasoning behind this formula is usually considered university
level mathematics, the formula itself is extremely useful to lots of people
who would not know how to derive it.

If the average event rate is fairly high, then the formula still works, but
looks more and more like a normal distribution. In fact, when the event
rate is very large, say λ > 1000 (as it is for hourly cosmic ray counts) we
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Figure 4: Histogram Cosmic Ray Rate Residuals (after Pressure and
Temperature-fit)

can replace the above formula by one that is much easier to calculate8:

P (k) =
1√
2πλ

e−
(k−λ)2

λ (4)

This is indeed the same as the normal distribution that we talked about
above, with a mean of and a standard deviation of

√
λ . (The standard

8 Factorials, such as k! and and powers, such as λk, are a problem to calculate directly
on computers when k gets large (and not even particularly large—somewhere between
10 and 20) because their magnitude grows very quickly with k. and rapidly exceeds the
ability of the computer to represent them accurately in their finite-precision arithmetic.
There are, however, a number of useful mathematic tricks that help (such as working
in logarithms) or using the well-known Stirling Approximation. These are discussed in
any book on numerical methods, and also usually implemented in widely available library
routines for calculating Poisson statistics, so you rarely actually have to do this yourself.
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deviation is a measure of the width of a distribution such as the one we have
illustrated in Figure 4.) As we noted above, our mean rate is about 2400, so
we might expect the standard deviation of the curve to be a little less than
50.

As a matter of fact, I calculated the standard deviation for the data
in Figure 4, and got a value of about 56—a bit larger than I might have
expected for pure random data. There are a number of possible reasons why
this can occur, including:

• We fitted straight lines to the correlations against pressure and tem-
perature. They looked failry good, but it may be that we would have
got an even better fit with, say a quadratic. (I suggested earlier that
a slightly curved line might be a better fit to the data.)

• There might be an additional influence on cosmic ray event rate that
we have not yet discovered—say, the intensity of the Solar Wind.

We must, however, beware of the danger of over-fitting. Correlations do
sometimes occur by chance, and the more parameters we try to fit to our
data the more likely it is that we will find something that looks significant. It
is sometimes called the ‘look elsewhere effect’ because if you have not found
something interesting with one set of fitting parameters, you keep trying
different combinations and undoubtedly at some point you will eventually
find an apparent but completely spurious correlation.

One the other hand, the standard deviation is not so very much higher
than I would expect, and it may be that the particular selection of data
I have used have given me a larger value by chance. At present I suspect
that I do not have enough data to work out if anything else is going on.
When I find that I am in this type of situation, and I know that there is
more data potentially available, I go and get it, rather than worrying about
applying complicated statistical tests. Things that are worth knowing about
are usually obvious!

In summary, the ANOVA process involves taking out the successively
most important influences from the observed data one by one until we are
left with something that we are sure is pure randomness.

In professional research we usually try to estimate the probability that
the results which we report could have occurred purely by chance. Standard
statistical tests often return a so-called P Value which relates to the proba-
bility of getting the results we see by chance. For important claims, where
being right or wrong matters more, we demand very small probabilities that
our data could be due to chance. High Energy physicists (the people who
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work at CERN for example) typically demand very low probabilities (say
P < 1/1, 000, 000) before they will accept the ‘discovery’ of a new particle.
Experiments on the Large Hadron Collider cannot be reproduced elsewhere
at present—they are unique—and repeat runs required years of data taking
on one of the World’s most expensive machines. LHC Physicists need to
really get it right first time. Biology and psychology journals, on the other
hand, sometimes require P-value of only P < 1/20 before they let you pub-
lish a result because their experiments tend to be easier to check, so it is
worth, in effect, saying in public ’We might have something interesting here.
Please confirm it’.

You are however, not behaving scientifically if you keep repeating the
experiments (say 100 times!) until one result looks significant9. Sooner of
later something that looks positive will turn up just by chance.

The correct way to deal with this problem is to repeat the original experi-
ment with a new set of data and see if the hypothetical effect is still there. In
our case we can try the same experiment with a different HiSPARC station,
or use data from a different time period on the same station.

4.3 Data Analysis with Programming

Writing error-free computer programs is challenging, and unless you are a
well-trained professional, it is likely to take longer than you anticipate and
unlikely to produce results that match your hopes. A large part of my job
before retirement was ensuring that my colleagues in the nuclear industry
did not stray into producing low quality programs when we needed very high
quality software that worked well.

Therefore, whenever I had a problem that required handling of large
amounts of data I would first look for professionally-developed tools (some
of which, ah-hem, since I was, indeed a well-trained professional in the data
handling game, I had previously produced myself). Nevertheless, it is not
at all unusual to find that there is nothing available that quite meets your
needs, because we continually wish to look at new types of correlation.

There is no way around it: if you are involved in experiments that pro-
duce large amounts of data, you need to know how to write computer pro-
grams. If, however, you are sensible you will also try to make the maximum
use of proven tools produced by others.

9 Unfortunately, this does happen. Experimenters often struggle to find which are the
critical control parameters amongst many possibilities—and keep trying new variations un-
til something pops-up). Other people then try to reproduce their findings and get nothing.
In some journals about half of the published results turned out to be unreproducible!
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I am likely to pose myself the following set of questions:

• Can we solve the problem using Microsoft Excel? I make no secret
of the fact that I do not like using Excel for other than relatively
trivial situations, mainly because they are often hard to test, and it
can be very difficult to see if you have made mistakes when creating
a complicated spreadsheet, Even when you are sure you have made
a mistake somewhere, it can be almost impossible to find. Neverthe-
less, if I have a relatively small amount of data (no more than about
100 rows) organised in columns, and the manipulation required are
relatively simple (multiply this column to that and add the other col-
umn) with the results then to be presented graphically as a simple x-y
scatter plot, it can be the fastest and most reliable way to an answer.

• If the data is already stored in a relational data base to which I have
access, can I do the data manipulations using the Standard Query Lan-
guage (SQL)? Relational queries can sometime achieve with a one-line
instruction what would require hundreds of lines of conventional pro-
cedural programming. It is well known that the time required to write
programs and the chance of making mistakes rises linearly with the
number of lines you have to write, so where it works, an SQL solution
is often extremely efficient. (Sometimes it is even worth putting tab-
ular data into a relational database just so we can manipulate it with
SQL: I have done this many times.) Unfortunately, not all problems
have a form that can be readily addressed using relational operations,
and most scientists choose not to develop the skills to use relational
languages. Well, HiSPARC data does get stored in a relational data
base, but unfortunately we do not have direct access in a way that lets
us use SQL queries.

• If I have a statistics problem, can I use one of the well-know and very
reliable statistical toolkits? Statisticians and other ‘data analytics’ or
‘data science’ professionals may well use sophisticated (and expensive)
commercial software such as SAS. Commercial organisations who pay
such people high salaries usually conclude that it is also worth giving
them the tools that can get them to answers as quickly as possible
and so they are prepared to pay for the highly polished user inter-
faces, voluminous documentation and associated professional training
courses. It works out cheaper in the end. For those who cannot afford
this (such as many academic scientists) the Open Source ‘R’ statistical
toolkit is just as (perhaps even more) powerful, but has a much less
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polished user interface, and there is a lot of ‘teach yourself’ if you want
to employ it.

• Can I find a software library that provides the tools that I need and
that I can use with my favourite language? There are always com-
promises. Some computer languages and associated libraries, such
as Python, are relatively easy to learn and have very comprehensive
scientific and mathematical library support. That means you write
less code which also means that it more likely to to be error free.
On the other hand, because the design of languages such as Python
emphasises rapid program building they cannot also provide efficient
program execution—the programs may run relatively slowly, and that
can matter if we want to process very large amounts of information.
Other languages (e.g. C++) allow the construction of very efficient,
fast running software but in my opinion are more complicated to learn
and do not have the same range of scientific support. That means that
although you may save time when executing a program, it may take
you much longer to produce a program that works without errors.

It comes down to a matter of judgement about which route will ulti-
mately prove more efficient, given the amount of data you must pro-
cess, the number of times you will want to do it in the future (I have
produced software that had to be used everyday on every nuclear power
station year after year) and the complexity of the problem and perhaps
even your existing skills and the skills of the staff who are available
to help you. (You might be a C++ expert and a Python novice. In
which case go for C++.)

Some languages, such as Javascript, though highly fashionable just at
present (and even I quite like it for some things), are still relatively im-
mature and have yet to acquire a comprehensive set of stable and well
trusted numerical and statistical libraries. Fortran (almost the oldest
of the computer languages) is still highly favoured in some areas of
physics research because its syntax is well adapted to describing the
type mathematical formulae that turn up in physics, it can be com-
piled for very efficient execution and also has very extensive numerical
libraries that are tuned to work on very large scale parallel processing
architectures. If you want to simulate the evolution of the universe, or
the changes to the climate caused by global warming, this is probably
the way you would go.

Only as a last resort do I program the data analysis algorithms myself. I
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do, however, find that I frequently need to combine bespoke programs with
analysis using one of the techniques above.

The bottom-line message: you need some basic knowledge of program-
ming. The language you first choose to learn is less important because the
higher-level programming skills are readily transferable between languages.
As will all skills, the more you learn, the more you can do. The professional
scientist working in large scale simulation or data analysis is probably flu-
ent in several computer languages and switches easily according to which
is the best for today’s problem. He also knows how to write software sys-
tems where different parts are written in different languages, each using the
language that is best adapted for the job it has to do.

4.4 Data Presentation

Good experiments and good analysis are of no use unless you can commu-
nicate the results effectively. That does not mean giving the reader every
possible graph or table that you have produced. It does mean understanding
the particular interests of the reader, and what he or she needs to know. It
also means having an argument that you want to present, and knowing how
to decorate the argument, expressed in words, with the right figures at the
right places. You can hide the point that you really want to get across if
you bury it in piles of irrelevant graphs.

As always, the standard rules of producing graphs must be followed:

• Each axis must be labelled and show units.

• The graph should have a title.

• If you are plotting several curves on the same graph, provide a legend
to explain which is which.

• Remember when plotting multiple curves on the same graph that a not
insignificant proportion of readers are colour blind (there is probably
at least one in your class—who may not even realise it) so you should
not use only colour to distinguish the curves. It is a good idea to also
employ different types of broken line (dot-dash patterns) or different
icons for points.

• Every figure in a document should have a figure number, and should
also be referenced from and explained in the text.

Once again, if you are a professional with a serious research budget you
might well purchase a slick commercial graphics package. Many academics
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prefer to spend their money on other things, and use open source software
which is less easy to use, but often just as powerful and flexible. There are
many such packages available on the Web, perhaps hundreds, and you may
already be familiar with one of these tools, or have one already installed on
your computer. I can only speak about those that I have used extensively,
and that I know work very well. They are also ones that are very widely
used and almost always come somewhere in the ubiquitous lists of ‘top-five
free graph plotting packages’.

It is not enough, however, just to plot a graph. We also need to be able to
incorporate it into our reports. That may well influence the tool we choose
because some produce graphs that are easy to include in Word documents,
while others are better at interfacing with the other document production
tools that are more widely employed by physicists and astronomers.

4.4.1 GNUPlot

GNUPlot (gnuplot.org) is extremely widely used in research establishments.
It can probably do anything most researchers need (outside the realms of
producing 3D reconstructions of brain-scans and so on). It is relatively
easy to learn to do simple plots, and although you have to teach yourself
how to use it from the manual (and a few YouTube videos) the manual
is well written and very comprehensive. Your main problem is finding the
description of the option you need to employ, amongst many other options.

It is particularly liked by mathematicians and physicists who tend to
write a lot of documents using a system called LaTeX, because it produces
its graphs in a form that are easy to incorporate into LaTeX documents.
When used in this way it is designed to produce ‘publication quality’ graphs
(i.e. acceptable to editors of scientific journals who need to have figures that
reproduce well in print without taking up too much space).

If you have computer files containing tabular data in columns then GNU-
Plot is probably the simplest way to get to an elegant graph. It is available,
free, for all types of computer systems and is likely to be pre-installed with
many versions of Linux (though installing on MacOS in not entirely trivial,
as it is with Windows).

4.4.2 matplotlib

Those who program in Python can use one of several library ‘modules’ for
graph plotting. I have used matplotlib. It is, in my opinion, not as easy as
GNUPlot, unless you requirements mean that you can just directly copy one
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of the recipes from the on-line tutorials. That will, however, probably get
you through about 90% of what you will ever need to do. The difficulties
occur if you want to go to the next stage and do something not explained
in the tutorials. Then you will need to spend a good deal of time learning
how you build graphs from simpler components10.

Nevertheless, matplotlib is very useful if you are do a lot of data process-
ing with Python because you do not have to write out files containing data
tables just so you can transfer data to applications such as GNUPlot. It is
usually much easier just to pass the arrays holding your data to the relevant
matplotlib function. You can, if you need, produce very sophisticated lay-
outs, fully up to the standard required by editors of scientific journals and
it is highly configurable so that you can take account of the preferences of
different journals.

The graphs in this note were produced by matplotlib, but they also il-
lustrates one of the problems with this package—the default text for axis
labels can come out too small, and experimentation with the configuration
is usually required for the best results.

4.4.3 Excel

Microsoft Excel is very convenient for producing plots from relatively small
datasets. As long as you are prepared to accept one of the standard formats
it is very easy to use, but configuring it to do something slightly out of the
ordinary can be quite challenging.

Excel is also very convenient if you want to embed graphs in documents
produced with other Microsoft software, such as Word. It is much less
convenient if you are a mathematician or mathematical physicist who needs
to write document full of equations (i.e. probably using LaTeX rather than
Word). It is not so easy to persuade Excel to save graphs in one of the
formats used by almost everyone other than Microsoft. We do it if we have
to, but we do not enjoy it.

One other big disadvantage for scientists handling large amounts of data
is that Excel is very slow if you have more than a few hundred lines, and
graphs based on tables with more than a few hundred rows tend to come
out as overlapping clouds of points and are completely useless for scientific
reports. I have yet to find a way to persuade Excel’s graph plotter to use

10 My opinion of matplotlib may be partly because I never had cause to learn to use a
commercial software package called MATLAB that is widely employed by scientists and
engineers, because matplotlib is designed to mimic features of MATLAB. This is very
convenient is you are an experienced MATLAB user, but less so if you are not.
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really tiny points.

A Deriving EAS/Steradian from Detector Signals

The detectors are horizontal plates, each of about 0.5 square meters. It is,
however, only showers arriving from the zenith that see the full area, at any
other zenith angle, θ the projected area on the sky is reduced by cos(θ).
That will reduce the EAS trigger rate by cos(θ) so we will need to divide by
a factor of cos(θ) to infer the trigger rate from a plate placed perpendicular
to tracks coming in at zenith angle θ.

In addition, however, there is more sky at larger zenith angles than
smaller angles, just because we are not distinguishing between EAS events
at different azimuthal angles. So, between zenith angles θ and θ + dθ on
a sphere or radius R there is an area 2πRsin(θ)Rdθ. This represents a
solid angle of Area/R2 = 2πsin(θ)dθ, and for a detector that is uniformly
sensitive to all directions this would describe the variation in detection rate
for EAS events with zenith angle.

Our detector, however, is not uniformly sensitive, so we should include
the cos(θ) factor for the projection of the detector plate area to get a factor
of 2πsin(θ)cos(θ)dθ for the variation in expected EAS event rate with zenith
angle for an infintessimal range of angles between θ and θ + dθ.

In practice, we want to divide our detection rate into finite ranges of
zenith angle—say five or ten degrees. We therefore need to sum the areas
using an integral between the upper and lower angle:

F =

∫ θ2

θ1

2πsin(θ)cos(θ).dθ (5)

For those who have done A-level maths (integral calculus) this is an in-
tegral that can be immediately reduced to a trivial form by a well-known
substitution trick, cos(θ)dθ)→ d(sin(θ)) giving∫ θ2

θ1

2πsin(θ)cos(θ).dθ = 2π

∫ θ2

θ1

sin(θ).d(sin(θ)). (6)

which is now, after the substitution sinθ → x, has the trivial form
∫
x.dx→

x2/2. For those who have not yet done A-level maths, you will learn to do
stuff like this in your sleep.

Hence: ∫ θ2

θ1

2πsin(θ)cos(θ).dθ = π
[
sin2(θ2)− sin2(θ1)

]
(7)
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This clearly has the right sort of form, because it goes to zero at the zenith
(where there is an infinitesimal amount of sky) and also goes to zero at the
horizon (where there is zero projected detector plate area) and is a maximum
half-way between.
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