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1 Motivation

The hardest and most expensive part of spaceflight is getting from the
Earth’s surface into orbit. (The second hardest is probably getting back
down again!) This is an issue of potential wells: a kilogram orbiting in
space has a lot more potential energy than one at the Earth’s surface. It
also has to keep moving in order to stay in orbit and that means that there
is also kinetic energy.

Once we are well out of the Earth’s potential well - say, somewhere like
the Geostationary Orbit (GSO) height the energy cost of getting anywhere
else in the Solar System is relatively low.

Furthermore, although we have to exert very high forces to lift a massive
rocket against the acceleration due to the Earth’s surface gravity and also
to accelerate it to orbital velocity, once we are in orbit the forces required
are much lower - providing we do not have to do anything very quickly.

At present, however, the energy still has to come from burning rocket
fuel and all that fuel still has to be lifted from the Earth’s surface. This
process is very energy inefficient because we have to burn the rocket fuel all
the way from the Earth’s surface until we get into low-Earth orbit (LEO) ,
so the fuel that we burn later in the flight has itself to be lifted out of the
gravitational potential well and also has to be given kinetic energy, as part
of the rockets motion.

It turns out that for every kilogram of fuel we may want to burn after
leaving GSO we probably have to burn about twenty kilograms or more
getting it there.

If we want to have a serious industrial presence in space, for example to
mine asteroids for rare and essential elements that are running out on Earth
we need a better way—otherwise it will all get too expensive.

The fuel efficiency of a rocket motor depends on the amount of momen-
tum you can give to each kilogram of material in the exhaust plume. If you
can can eject the exhaust faster you use less fuel to get the same acceleration.
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The exhaust velocities of chemical propellants are limited by the amount of
chemical energy contained in each kilogram of fuel: the higher the specific
energy content, the higher the potential exhaust velocity. At the atomic
scale it is a question of releasing energy in a chemical reaction between two
molecules which is then used to accelerate the reaction products. Ideally you
want reactions that involve big releases of energy, but you also need light
molecules so that they heated to high temperatures and accelerated to high
velocities. This is one reason why NASA’s space shuttle was partly powered
by using liquid hydrogen and oxygen as the propellant: it has a high specific
energy release and the lightest product molecule. (There are other reasons
why engineers often choose not to employ this combination, not least be-
cause explosive cryogenic liquids are very difficult to handle safely.) All this
means that our rocket motors have pretty much reach the theoretical limit
of what is possible with chemical propulsion.

The Tsiolkovsky Rocket Equation nails down the fundamental relation-
ships that dominates the thinking of every rocket engineer and astro-navitagor:

∆v = ve log
(m0

mf

)
=⇒ mo = mf .exp

(∆v

ve

)
(1)

where:

• ∆v is the change of velocity actually achieved,

• ve is the exhaust velocity,

• m0 is the initial mass (including propellant - the ‘wet’ mass),

• mf is the final mass after the rocket shuts off. It is sometimes called
the ‘dry’ or empty mass, but the equation still applies if you need
to keep fuel in your spacecraft for further manoeuvres. The equation
relates the ‘’before’ and ‘after’ mass of the spacecraft to the velocity
change.

This basically says that if we have to work with a fixed ve then we are
on a hiding to nothing as we try to attain higher and higher velocities (e.g.
if we want to send a spacecraft out to Jupiter in a reasonably timescale).
You are pouring more and more energy into accelerating more and more fuel
just so you can throw it out of the back of the rocket.

This is why nearly all deep space missions use planetary ‘sling-shots’
to give spacecraft very high velocities. (The astro-navigators design the
course so that the spacecraft effectively bounces off the potential well of an
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approaching planet - fundamentally the same as a using tennis racket to
increase the velocity of a ball, except that the we do not actually hit the
planet, just get pulled around the back in a close orbit.)

See Appendix A for a discussion of the energy cost of getting into geosta-
tionary orbit (which is our current standard of comparison). The appendix
also illustrate the importance of the ∆V concept in astronavigation.

The other problem with our launch methods is that we end up throwing
away most of the launch vehicle. A rocket booster is a very expensive piece
of hardware and in most cases it is only used for a few minutes at the start
of a flight and then falls back into the ocean. While the fuel required to get
a few kilograms into orbit is expensive, the booster hardware is extremely
expensive—and a lot of energy has been used to make it. I suggest that you
research the actual costs of fuel and the costs of the hardware.

More recently companies such as SpaceX have demonstrated reusable
boosters that fly back to their launch platforms. This does, indeed, sub-
stantially reduce the cost of launches, but there are downsides and limits to
what is possible. Firstly, booster hardware—especially the rocket motors—
is very highly stressed during its flight, so the second and subsequent flight
are predicted to have higher risks of launch failure. Hence, if you have a
really expensive and critical satellite to launch, you pay extra for first-use
of the booster. There is also a significant amount of maintenance required
between launches with deep inspections on the rocket motors, and replace-
ment of critical parts. It is not at all like reusing a commercial aircraft on
hundreds of flights each year between major maintenance inspections.

At present, the cost of doing thing is space is far too high to consider
some potentially valuable applications, such as mining rare metals from
asteroid. (We a rapidly mining out the ores of some metallic elements with
uniquely irreplaceable properties, but we know that some asteroids have
these available in their rocks in much higher concerntrations than we find
near the Earth’s surface.

2 Proposal: Investigate the Feasibility of Building
a ‘Space Elevator’

The idea of a space elevator was brought to public attention by the visionary
science fiction author, Sir Arthur C Clarke, in his late 1979 book ”The
Fountains of Paradise” but the idea has a much longer history with various
discussions going back as 1895. The modern form of the idea, however, was
studied by Jerome Pearson in 1969.
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The basic idea is to have a large counterweight sitting in geostationary
orbit (this might well be a large asteroid towed into position). From this we
would drop a cable down to the Earth’s surface.

Now, instead of burning rocket fuel to get into orbit, we have modules
that grip the cable and climb out to the counterweight. From there it would
be possible to travel around the Solar System at little energy cost because
we are almost entirely out of the Earth’s deep potential well. The climber
modules would then return to Earth, carrying material (such as rare min-
erals) that we have either made or mined in space. In principle it might be
possible to reduce the cost of getting to high Earth orbit by a substantial
amount—maybe by a factor of 10—mainly because all the hardware should
be highly reusable, and although we still expend energy climbing the cable,
we might be able to recover much of it when the module descends (since we
have to apply a braking force to stop it accelerating down at ever increasing
velocity, it should be possible to make it do work).

If it was easy, we would have already done it. There are, in fact, a good
many technical problems, but none of them are so far beyond our current
technology that the prospect is hopeless.

Your challenge is to investigate the gap between aspiration and reality,
by studying the physics of a space elevator and performing calculations
which illustrate the problems and that identify the targets that need to be
attained.

3 A Brief Survey of Issues

3.1 Strength of Materials

Our cable hangs down from the geostationary counterweight. That means
that the cable up near the top is supporting the weight of all of the cable.
Note that the force of gravity is, of course, falling off a 1/R2, so we have to
do an integral to work out the tension in the cable at any point. This is,
however, a difficult calculation.

We would soon find that a cable made out of something like high-tensile-
strength steel would only get a fraction of the distance down to the Earth
before its own weight caused it to snap. (I am going to leave it to you to
look up the numbers and perform the calculation.)

We cannot improve the situation by making the cable thicker, of course.
We might double its strength by doubling its cross section, but we also
double its weight, so it still snaps at the same point.
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It is possible to do rather better, however, if we taper the cable, so it
is thick near the top, where it has to carry the full cable weight, but gets
thinner as we go down.

It is not particularly hard to calculate the ideal variation in cable cross
section that gives maximum length before snapping. (It is well within the
scope of A-Level maths, though you will have to work at it.) We will still
find, however, that materials like steel simply cannot be made strong enough
to support their own weight. The fundamental issue here is that though
fairly strong inter-atomic bonds bind together the atoms in steel alloys, iron
is a heavy atom. There is little that can be done to increase the strength of
the bond—they are limited by the chemistry and the properties of atoms.
There will be a fundamental limit to the tensile-strength/weight ratio of any
steel alloy1. We therefore need to ask whether there are other materials that
potentially have higher strength-to-weight ratios. Glass has a high strength-
to-weight ratio, but is also brittle, so is not a good engineering material.
Glass reinforced plastic (GRP) sometimes called fibreglass overcomes some
of the problems, but is still not good enough. Carbon fibre (again held in
plastic resin) is even better, but still falls short.

Note that we are looking at light atoms, such as carbon, which still have
strong inter-atomic bonds. Can we do better than carbon fibre? Maybe!

Recent work has investigated the properties of carbon nano-tubes and
another form of carbon now called graphene. These may well meet the
strength-to-weight criteria, but they have only so far been made in very
small quantities, and no one knows whether it would be possible to manu-
facture them into large, sufficiently defect free engineering structures. We
can speculate, however, and this is what I would challenge you to do. What
would become possible if we did achieve the ultimate theoretical strength of
these exotic carbon-based materials?

The above problems, bye the way, may be limiting for a space elevator
above the Earth, but it are not necessarily true for elevators above the Moon

1 We need to point out that real alloys are often show much less strength than the
theoretical limit. This is because real materials normally contain microscopic defects that
concentrate stress just where you do not want it. Glass, for example, is actually a very
strong material in tension, but if you scratch the surface one gets a concentration of stress
at the tip of the scratch which can often easily exceed the tensile strength locally. So,
a few atoms can be easily pulled apart by the applied forces, but this makes the scratch
turn into a crack, and the more the crack grows the higher the stress concentration, so
the faster it grows.

Metals such as steel, have a rather more complicated way in which crystal defects reduce
their strength—and it also explains why alloys such as steel are much stronger than iron.
Look up ‘dislocations’.
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or Mars, which have smaller gravitional fields. Even if we never do it for the
Earth we might well still want to do it elsewhere at some point.

See Appendix B for further discussion of material strengths.

3.2 Energy Supply to the Climber

How do we feed power to the climber module, so it can ascend the cable?
One could try to give it an internal power source (e.g. a battery, or

even rocket fuel). It is, however, very instructive to perform an integral,
of the type used to derive the rocket equation, and work out how much
internal fuel would be required to reach geostationary orbit (compared with
the requirements of the type of orbits discussed in Appendix A). I would
encourage you to do this—it reveals some important principles.

We would not go down this route just because it saves lots of fuel. (You
find out what if any is the saving.) We mainly do it because it saves hard-
ware.

We do, however, have with a cable the possibility of feeding energy to
the climber modules from the outside: the do not have to carry their energy
source with them.

A number of options can be considered (you should follow through!):

• Generate electricity from solar panels attached to the climber mod-
ule. Obviously this is probably not viable in the Earth’s atmosphere,
because of the aerodynamic drag, but the panels might be extended
once in space. Can we get enough energy this way? How big would
the panels need to be? How heavy would they be?

• Could energy be fed from the cable? Would it be possible to place
solar panels all along the cable? Could you embed super-conducting
power cables in the elevator cable and feed energy from a massive solar
array at line-top?

• To what extent could we extract energy from descending modules, and
feed electricity across to climbing modules at about the same height?
(Here we assume that there will be a more-or-less frequence sequence
of modules climbing and descending.)

• Can we ‘beam’ energy down to climber modules from massive solar
arrays at geostationary orbit. (There have been experiments in turning
electricity into microwaves and beaming then to a distance antenna
where it is turned back into electricity at surprisingly high efficiency.)
Is this feasible? Could we use laser beams?
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3.3 Constructibility

• Have you ever wondered how you put long bridges over wide gaps?

• How do you provide support during the construction process, when
there is nothing in the middle?

• How do you erect the tall cranes that are used to build tall building?

• Do you need taller cranes - and how do you erect those?

• How would be actually build a space elevator?

• Where would the materials come from?

• How do you turn them into the form required?

• Where would the energy come from?

• How do we actually get it down to a particular point on the Earth’s
surface and safely fixed down without flailing around?

• Could you do this with human labour—or do you need robotic manu-
facturing techniques?

3.4 Safety Implications

What would happen if the cable snapped (perhaps after being hit by a
meteorite)?

3.5 Finance

How Much Would it all cost?

4 Do it with Numbers!

The essence of a science and engineering feasibility study is that you do the
sums.

There is a great deal of speculative descriptive material on the Web. We
want to know whether any of the science actually hangs together. The core
skill of a practicing professional physicist is turning wishes and speculations
into questions that can addressed in a quantitative way—even if the answer
consists of phrases such as ”probably better than” and ”probably no worse
than”.
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As with most physics, the questions can ultimately be addressed by
thinking about energy, power, force and strength.

For those of you who are seriously thinking of degrees and subsequent
careers in physics or engineering I strongly recommend the following two
books, which are available to download in PDF format under the Creative
Commons licence.

• The Art of Insight in Science and Engineering https://mitpress.mit.edu/books/art-
insight-science-and-engineering

• Street Fighting Mathematics https://mitpress.mit.edu/books/street-
fighting-mathematics

The above publisher’s pages both contain an ”Open Access” link for down-
loading the PDF—though just Googling the title is likely to bring up direct
links to the PDFs. Both of these books teach the art of finding ‘good-enough’
answers without having to produce exact solutions to complicated problems,
and show you how to understand the essential nature of problems, without
loosing yourself in mathematical manipulations.
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Appendix A: The Importance of Delta-V

The Tsiolkovsky Rocket Equation expresses the relationship between the
increment in spacecraft velocity and the proportion of the fuel that is con-
sumed achieving that change:

∆v = ve log
(m0

mf

)
=⇒ mo = mf .exp

(∆v

ve

)
(2)

When using chemical propellants it is nearly always sensible to use fuel
in short, high-thrust ‘burns’ because in that way we may be able to avoid
carrying fuel out of potential wells.

So, having achieved a circular low-Earth orbit (at some cost in fuel),
we may now wish to move to a higher orbit (for example, geostationary
orbit). The normal way we might perform this manoeuvre would be to give
a momentum kick to the spacecraft with a short period of high thrust that
quickly increases its velocity. (We shall assume that this ∆V is acquired in
an effectively instantaneous internval.) Since the spacecraft is now moving
too fast to maintain the circular orbit it will now be moving in an elliptical
orbit with the perigee (the point of closest approach) at the point where the
change in velocity occurred. At some point later the spacecraft will be at
apogee (the point furthest away from Earth) but having climbed out of the
gravitational potential well for some distance is now moving more slowly. It
is, of course, now moving too slow to maintain a circular orbit at the apogee
distance so starts to ‘fall-back’ towards the Earth.

At the apogee, however, we can stabilise a circular orbit if we perform
another burn to deliver just the right ∆V to increase the spacecraft velocity
to that required for a circular orbit at this height. It is easy enough to work
out the amount of fuel required for this change in orbits. If the first velocity
increment is ∆V1 and the initial mass is mo while the mass after the first
burn is m1 then:

∆V1 = ve log
(m0

m1

)
(3)

For the second burn we start with mass m1 and then finish with mass m2

having incremented velocity by ∆V2 so,

∆V2 = ve log
(m1

m2

)
(4)

So, the ratio of the initial mass to that after the second burn mo/m2 is just
given by:

∆V1 + ∆V2 = ve

(
log

(mo

m1

)
+ log

(m1

m2

))
= ve log

(mo

m2

)
(5)
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That is, in order to calculate total fuel requirements for several manoeuvres
we just add the ∆V s for all the the individual steps, and then use the rocket
equation (2)

Many astronavigation problems are described in terms of ∆V - e.g. ”the
∆V required to rendezvous with asteroid XYZ”.

It may be useful to go outline how one might calculate the required ∆V s
for a simple situation. (You can follow through with the detail.) See Figure
1 for an illustration of the problem of transferring a spacecraft to a higher
orbit (where both orbits are circular). We have two knowns: the radius
of the low orbit, r1 and the radius of the high orbit, r2, both of which also
determine the orbital velocities, V1 and V2 from Newton’s law of gravitation.

Our task is to calculate the velocity changes required to enter and leave
the elliptical transfer orbit. Note that we do not need to calculation the
exact shape of the ellipse in this simple case because we can rely on two
conservation laws: conservation of energy and conservation of angular mo-
mentum. The energy at the two burn-points is easy to calculation using the
gravitation law as the sum of potential and kinetic energy, which are entirely
determined by the position and the velocity. The angular momentum at the
perigee and apogee of the ellipse are also easy to calculation because the
velocity is exactly perpendicular to the the radius vector at these points.
You should now be able to write down two conservation equations, which
have two unknowns: dV1 and dV2 so you can solve for the unknowns. We
then just add the two ∆V s in order to calculate the fuel requirement from
equation 2.

Most of astro-navigation using chemical propellants is about gluing to-
gether sections of elliptical and circular orbits, connected by ∆V changes. It
does, of course, get more complicated when cannot do our velocity changes
at the apogee and perigee of the ellipses, but that is why we have computers
to do the complicated detail for us.

In reality, when we want to go to Mars or Jupiter, which would required
quite large ∆V s we tend to plan orbits that involve ’slingshots’, which uses
close orbits around the back of other planets to increase our velocity and
energy for free.

∆V do not help us with fuel calculations for continuous-thrust courses,
which are usually less efficient than this quick-burn+coast option. However,
while low-thrust propulsion cannon give the almost instantaneous impulses
of chemical propellants they burn fuel at a much lower rate and use very
much higher exhaust velocities, so they are viable options.
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Figure 1: Transfer Orbit
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Appendix B: Relevance of Strength of Materials

All the materials that we see around us are held together by atomic bonds
which are ultimately based on electromagnetic forces. In principle, the max-
imum strength of a material depends on the strength of the atomic bonds
holding it together. If we want to pull on, say, the two ends of a rod until
it breaks in half we have to supply a force that overcomes the combined
interatomic forces holding together the planes of atoms in the bar. Real
materials always seem to be much weaker than the strength we calculate
in this way because they nearly always contain small defects that tend to
concentrate stress, so we do not have to break a complete plane of bonds all
at once, instead we can break them one by one, like tearing a sheet of paper
once a small nick has been made in one edge.

We are used to thinking of materials like steel as very strong, but they
are also very dense. Iron is a heavy atom, but inter-atomic forces do not
necessarily increase in proportion to an atoms mass. In fact, in terms of
its strength/weight ratio, steel is not very good. Aluminium is, of course,
a much lighter atom, but its bond strength is also much lower so although
its alloys can have higher strength/weight ratios than steel (which is why
they are used in aircraft construction) it does not provide a solution to our
problem.

We need to look at light atoms that still have strong inter-atomic bonds,
and down at the bottom end of the periodic table there are few options,
which pretty much resolve down to exotic forms of carbon. We have used
carbon fibres in aircraft construction for many years because of its very
high strength/weight ratio (which has to be set in epoxy resin because it
is otherwise too flexible if you want to build aircraft spars). You could,
however, imagine weaving a material out of carbon fibres.

More recently there has been a lot of interest in materials such as carbon
nano-tubes and graphene (which I will leave you to research). These promise
to be much stronger than conventional carbon fibres and one might imaging
using them to make very large and very light sails—if we could produce
them in sufficient quantities. That at the moment is the technical barrier:
in theory a film of graphene of about the thickness of cling-film could support
an elephant, but the largest defect-free samples produced so far are finger-
nail sized.
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